869 resultados para Desert ecology
Resumo:
1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.
Resumo:
Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies.
Resumo:
The Gaxun Nur Basin in arid China is tectonically influenced by the left-lateral displacements along the Gobi-Altay and Qilian Shan shear zones, resulting in a large pull-apart basin with strong subsidence in the interior. The up to 300 m thick basin fills consist of fluvio-lacustrine fine-grained deposits mainly transported by river discharges from the Tibetan Plateau. They led to a large depositional area of more than 28,000 qkm in size with presently dry terminal lakes at the outer edges. This vast area serves as a main source for loess transport to south-eastern regions of China (Loess Plateau) caused by the variable winter monsoon. Based on geochemical and sedimentological analyses of the sediment core D100 retrieved from a deep drilling in the centre of the Gaxun Nur Basin following questions have to be answered: 1. Reconstruction of the water balance and determination of hydrological cycles during interglacial and glacial periods. 2. Reconstructing variations in lacustrine environment and aeolian activities with respect to transitional phases fro, warm to cold stages (MIS 4 to 5 and older stages). 3. Establishing a sustainable chronology for the last 250 ka.
Resumo:
In the Monte Biogeographic Province, located in the arid region of Argentina, the presence of Prosopis flexuosa DC. produces spatial heterogeneity through edaphic modifications and microclimate changes. This results in vegetation patches differing in species composition and abundance. However, this interaction can be modified by the occurrence of gradients of biotic stress or disturbance intensity. In particular, grazing has been observed to enhance or reduce vegetation heterogeneity. Such complex of interactions could determine forage availability for cattle in one of the driest areas of the Monte Desert. We assessed the effect of Prosopis on understory species and analyzed whether the outcomes of this interaction differed with distance to watering points, as a proxy of grazing intensity, in the Northeast of Mendoza Province, Argentina. We used a two-way factorial design including the following factors: 1) microsite (under the cover of P. flexuosa trees and in intercanopy microsites) and 2) distance to watering points ("near the watering point", 500-700 m away, and "far from the watering point", 3-4 km away). Cover of each species, total cover, bare soil, and litter were recorded, and plant diversity, richness, and evenness were estimated with the modified Point Quadrat method. Results showed that P. flexuosa cover, distance from watering points, and the interaction between them determined species composition, abundance and spatial distribution of understory species, and were, consequently, a determining factor for forage availability. The presence of P. flexuosa enhances carrying capacity by supporting higher abundance of grasses under its canopy. Near watering points, high grazing intensity appears to disrupt the patches formed under P. flexuosa canopies, reducing the differences between microsites.
Resumo:
In deserts, seedling emergence occurs only after precipitation threshold has been exceeded, however, the presence of trees modifies microenvironmental conditions that might affect the effectiveness of a water pulse. In the Monte desert, Prosopis flexuosa trees generate different micro-environmental conditions that might influence grass seedlings establishment. The objective of this work was: a) to know the effective minimum water input event that triggers the emergence of native perennial grass seedlings; b) to relate this fact with the effect of the shade of P. flexuosa canopy and the seasonal temperatures. Three important forage species of the Monte were studied: Pappophorum caespitosum and Trichloris crinita, with C4, and Jarava ichu, with C3 metabolism. Each season, seeds of these species were sown in pots placed at two light conditions: shade (similar to P. flexuosa cover) and open area, and with seven irrigation treatments (0, 10, 20, 30, 40, 2*10 and 3*10 mm). J. ichu did not emerge in any of the treatments. Significant seedling emergence was registered for P. caespitosum and T. crinita in shade conditions with 40 mm irrigation treatment in summer. Since 40 mm precipitation events are infrequent in the Monte, seedling emergence for these species would be restricted to exceptional rainy years. The facilitating effect of P. flexuosa shade would be important during the hot season.