931 resultados para Delaware Water Gap National Recreation Area (N.J. and Pa.)--Maps.
Resumo:
During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).
Resumo:
Studies were carried out mostly in the area of RMS Titanic wreck site (41°44'N, 49°57'W) located above the continental slope and the south of the Grand Banks of Newfoundland. In a period from 18.06 to 24.09.2001 five surveys of production characteristics of surface phytoplankton were conducted over 5-9 days. Mean values of these characteristics obtained during the surveys were 9.2-11.7 mg C/m**3 per day for primary production (C_phs), 0.102-0.188 mg/m**3 for chlorophyll a (C_chls), and 4.44-7.42 mg C/mg chl. a per hour for assimilation number (AN). The main reason for low C_phs variability was a significant inverse relationship (R=-0.66) between AN and C_chls found over the research area. When cold shelf waters dominated in the area (27.07 to 19.08.2001), C_chls values for the slope region (0.125+/-0.031 µg/l) and for the outer shelf (0.130+/-0.040 µg/l) were similar. During strengthening of influence of warmer slope waters within area (from 29.08 to 13.09.2001), C_chls concentration within surface waters of the outer shelf was 0.152+/-0.039 µg/l and exceeded one for the slope region (0.094+/-0.004 µg/l) by factor 1.6. Against the background of low Cchls values, the High values of integral primary production in the water column (510-1010 mg C/m**2 per day) at low C_chls values measured within the area were determined both by high assimilation activity of phytoplankton and by the deep (30-40 m) maximum of primary production. Main reasons for formation of such a maximum were high chlorophyll concentration within the layer of the deep chlorophyll maximum (up to 0.5-2.5 µg/l) and in the relatively high solar irradiance within this layer varying from 1.4 to 8.6% of subsurface PAR.
Resumo:
To gain information on the physical parameters of the water masses in the area of the Coral Patch seamount (NE Atlantic), one CTD measurement was accomplished in close vicinity to the seamount (station GeoB 12761: 34°31.210'N, 11°08.510'W, 4430m water depth). CTD measurement were conducted during R/V PELAGIA expedition 64PE284 in spring 2008 (Hebbeln and cruise participants, 2008, urn:nbn:de:gbv:46-ep000103738). The CTD measurement of the water column down to a maximum water depth of 2500m was conducted using a SEABIRD "SBE 9 plus" underwater unit and a SEABIRD "SBE 11 plus" deck unit. The vertical profile over the water column provided standard data for conductivity, temperature and pressure. Additionally, the CTD was equipped with sensors for optical backscatter (turbidity), fluorescence (chlorophyll) and dissolved oxygen. Conductivity and temperature data were used to compute salinity.
Resumo:
The mouth area of the North (Severnaya) Dvina River is characterized by a high concentrations of methane in water (from 1.0 to 165.4 µl/l) and bottom sediments (from 14 to 65000 µl/kg), being quite comparable to productive mouth areas of rivers from the temperate zone. Maximum methane concentrations in water and sediments were registered in the delta in segments of channels and branches with low rates of tidal and runoff currents, where domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary, locating far into the delta and moving depending on a phase of the tidal cycle, decrease of methane concentration with salinity increase was observed. The prevailing role in formation of the methane concentration level in water of the mouth area pertains to bottom sediments, which is indicated by close correlation between gas concentrations in these two media. Existence of periodicity in variations of methane concentration in river water downstream caused by tidal effects was found.
Resumo:
According to data from Cruise 54 of R/V Akademik Mstislav Keldysh (September 2007) results of geochemical studies of redox processes in bottom sediments from the Ob River mouth area as applied to redox indicator elements (such as manganese, iron, and sulfur) are presented. Parameters of bottom sediments and distribution of these elements evidence not only a significant role of mixing processes at an geochemical profile of bottom sediments in the estuary but also a role of postsedimentation (diagenetic) processes.
Resumo:
While large-scale transverse drainages (TDs) such as those of the Susquehanna River above Harrisburg, PA, have been recognized since the 19th century, there have been no systematic surveys done of TDs since that of Ver Steeg's in 1930. Here, the results are presented of a topographic and statistical analysis of TDs in the Susquehanna River basin using Google Earth and associated overlays. 653 TDs were identified in the study area, 95% of which contain streams with discharges of less than 10 m3/s. TD depths ranged from a 23 m deep water gap near Blain, PA, to the 539 m deep gorge of the Juniata River through Jacks Mountain. Although TD depth tended to increase with stream size, many small streams were located in deep gaps, and eight streams with discharges of 10 m3/s or less were found in gorges whose depths matched or exceeded the deepest TD of the Susquehanna, the largest stream in the basin. Streams of less than 10 m3/s made up the majority of TDs regardless of the rock type capping the breached structure. Overall, TDs through sandstone-capped ridges were deeper than those topped by shales, and TDs in both sandstones and shales displayed a lognormal distribution of depths, which may be indicative of a preferred value. Stream flow direction was primarily perpendicular to local structural strike, with 47% of streams flowing NW and 53% flowing SE. 19% of the TDs were found to be in alignment with at least one other TD, with aligned segment lengths ranging from .5 to 14.8 km. The majority of TDs were in rocks of Paleozoic age. The techniques described here allow the frequency and distribution of TDs to be quantified so that they can be integrated into models of basin evolution.
Resumo:
In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.
Resumo:
Submarine gas hydrates are a major global reservoir of the potent greenhouse gas methane. Since current assessments of worldwide hydrate-bound carbon vary by one order of magnitude, new technical efforts are required for improved and accurate hydrate quantifications. Here we present hydrate abundances determined for surface sediments at the high-flux Batumi seep area in the southeastern Black Sea at 840 m water depth using state-of-the art autoclave technology. Pressure sediment cores of up to 2.65 m in length were recovered with an autoclave piston corer backed by conventional gravity cores. Quantitative core degassing yielded volumetric gas/bulk sediment ratios of up to 20.3 proving hydrate presence. The cores represented late glacial to Holocene hemipelagic sediments with the shallowest hydrates found at 90 cmbsf. Calculated methane concentrations in the different cores surpassed methane equilibrium concentrations in the two lowermost lithological Black Sea units sampled. The results indicated hydrate fractions of 5.2% of pore volume in the sapropelic Unit 2 and mean values of 21% pore volume in the lacustrine Unit 3. We calculate that the studied area of ~ 0.5 km**2 currently contains about 11.3 kt of methane bound in shallow hydrates. Episodic detachment and rafting of such hydrates is suggested by a rugged seafloor topography along with variable thicknesses in lithologies. We propose that sealing by hydrate precipitation in coarse-grained deposits and gas accumulation beneath induces detachment of hydrate/sediment chunks. Floating hydrates will rapidly transport methane into shallower waters and potentially to the sea-atmosphere boundary. In contrast, persistent in situ dissociation of shallow hydrates appears unlikely in the near future as deep water warming by about 1.6 °C and/or decrease in hydrostatic pressure corresponding to a sea level drop of about 130 m would be required. Because hydrate detachment should be primarily controlled by internal factors in this area and in similar hydrated settings, it serves as source of methane in shallow waters and the atmosphere which is mainly decoupled from external forcing.
Resumo:
New data on elemental composition of particulate matter from the North Dvina River are presented. In May (period of snowmelt flood) it is similar to the upper layer of the continental crust due to active erosion of crust material in the catchment area. In August (summer low water period) impact of biogenic components increases and elevated concentrations of Cd, Sb, Mn, Zn, Pb, and Cu are observed. At other seasons no significant increase in heavy and rare earth element concentrations is observed.