942 resultados para Debugging in computer science
Resumo:
The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission. MCN project was launched in November 2012 for the period of 36 month. In total top-tier 19 partners from industry and academia commit to jointly establish the vision of Mobile Cloud Networking, to develop a fully cloud-based mobile communication and application platform.
Resumo:
We introduce a justification logic with a novel constructor for evidence terms, according to which the new information itself serves as evidence for believing it. We provide a sound and complete axiomatization for belief expansion and minimal change and explain how the minimality can be graded according to the strength of reasoning. We also provide an evidential analog of the Ramsey axiom.
Resumo:
In this position paper, we describe the current status and plans for a Swiss National Research Infrastructure. Swiss academic and research institutions are very autonomous. While being loosely coupled, they do not rely on any centralized management entities. A coordinated national research infrastructure can only be established by federating the local resources of the individual institutions. We discuss current efforts and business models for a federated infrastructure.
Resumo:
In cranio-maxillofacial surgery, the determination of a proper surgical plan is an important step to attain a desired aesthetic facial profile and a complete denture closure. In the present paper, we propose an efficient modeling approach to predict the surgical planning on the basis of the desired facial appearance and optimal occlusion. To evaluate the proposed planning approach, the predicted osteotomy plan of six clinical cases that underwent CMF surgery were compared to the real clinical plan. Thereafter, simulated soft-tissue outcomes were compared using the predicted and real clinical plan. This preliminary retrospective comparison of both osteotomy planning and facial outlook shows a good agreement and thereby demonstrates the potential application of the proposed approach in cranio-maxillofacial surgical planning prediction.
Resumo:
We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.
Resumo:
This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.
Resumo:
Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.
Resumo:
Recognizing the increasing amount of information shared on Social Networking Sites (SNS), in this study we aim to explore the information processing strategies of users on Facebook. Specifically, we aim to investigate the impact of various factors on user attitudes towards the posts on their Newsfeed. To collect the data, we program a Facebook application that allows users to evaluate posts in real time. Applying Structural Equation Modeling to a sample of 857 observations we find that it is mostly the affective attitude that shapes user behavior on the network. This attitude, in turn, is mainly determined by the communication intensity between users, overriding comprehensibility of the post and almost neglecting post length and user posting frequency.
Resumo:
The future Internet architecture aims to reformulate the way the content/service is requested to make it location-independent. Information-Centric Networking is a new network paradigm, which tries to achieve this goal by making content objects identified and requested by name instead of address. In this paper, we extend Information-Centric Networking architecture to support services in order to be requested and invoked by names. We present NextServe framework, which is a service framework with a human-readable self-explanatory naming scheme. NextServe is inspired by the object-oriented programming paradigm and is applicable with real-world scenarios.
Resumo:
In this paper, we describe agent-based content retrieval for opportunistic networks, where requesters can delegate content retrieval to agents, which retrieve the content on their behalf. The approach has been implemented in CCNx, the open source CCN framework, and evaluated on Android smart phones. Evaluations have shown that the overhead of agent delegation is only noticeable for very small content. For content larger than 4MB, agent-based content retrieval can even result in a throughput increase of 20% compared to standard CCN download applications. The requester asks every probe interval for agents that have retrieved the desired content. Evaluations have shown that a probe interval of 30s delivers the best overall performance in our scenario because the number of transmitted notification messages can be decreased by up to 80% without significantly increasing the download time.
Resumo:
A reliable and robust routing service for Flying Ad-Hoc Networks (FANETs) must be able to adapt to topology changes, and also to recover the quality level of the delivered multiple video flows under dynamic network topologies. The user experience on watching live videos must also be satisfactory even in scenarios with network congestion, buffer overflow, and packet loss ratio, as experienced in many FANET multimedia applications. In this paper, we perform a comparative simulation study to assess the robustness, reliability, and quality level of videos transmitted via well-known beaconless opportunistic routing protocols. Simulation results shows that our developed protocol XLinGO achieves multimedia dissemination with Quality of Experience (QoE) support and robustness in a multi-hop, multi-flow, and mobile networks, as required in many multimedia FANET scenarios.
Resumo:
The Sensor Node Overlay Multicast (SNOMC) protocol supports reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers as it is needed for configuration, code update, and management operations in wireless sensor networks. SNOMC supports end-to-end reliability using negative acknowledgements. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. SNOMC supports three different caching strategies namely caching on each intermediate node, caching on branching nodes, or caching on the sender node only. SNOMC was evaluated in our in-house real-world testbed and compared to a number of common data dissemination protocols. It outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.