945 resultados para DIBLOCK COPOLYMERS
Resumo:
Noncompatibilized and compatibilized ABS-nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups (-NH2 or -COOH) under melt conditions to form SG-g-Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS-PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The graft copolymer of high-impact polystyrene (HIPS) grafted with maleic anhydride (MA) (HIPS-g-MA) was prepared with melt mixing in the presence of a free-radical initiator. The grafting reaction was confirmed by infrared analyses, and the amount of MA grafted on HIPS was evaluated by a titration method. 1-5% of MA can be grafted on HIPS. HIPS-g-MA is miscible with HIPS. Its anhydride group can react with polyamide 1010 (PA1010) during melt mixing of the two components. The compatibility of HIPS-g-MA. in the HIPS/PA1010 blends was evident. Evidence of reactions in the blends was confirmed in the morphology and mechanical behavior of the blends. A significant reduction in domain size was observed because of the compatibilization of HIPS-g-MA in the blends of HIPS and PA1010. The tensile mechanical properties of the prepared blends were investigated, and the fracture surfaces of the blends were examined by means of the scanning electron microscope. The improved adhesion in a 15% HIPS/75% PA1010 blend with 10% HIPS-g-MA copolymer was detected. The morphology of fibrillar ligaments formed by PA1010 connecting HIPS particles was observed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Blends of linear low-density polyethylene (LLDPE) and poly(ethylene-co-methacrylic acid) (EMA) random copolymer were studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and excimer fluorescence. In binary blends, crystallization of EMA was studied, and no modification of crystal structure was detected. In excimer fluorescence measurements, emission intensities of blends of EMA and naphthalene-labeled LLDPE were measured. The ratio of the excimer emission intensity (I-D) to the emission intensity of the isolated "monomer" (I-M) decreases upon addition of EMA, indicating that PE segments of EMA interpenetrate into the amorphous phase of LLDPE. (C) 1998 Published by Elsevier Science Ltd,. All rights reserved.
Resumo:
Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.
Resumo:
Isothermal and nonisothermal melt crystallization kinetics of a novel poly(aryl ether ketone), PEDEKK, were investigated by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization behavior. The activation energies were determined as 425 and 176 KJ/mol for isothermal and nonisothermal crystallization, respectively. The equilibrium melting point T-m(o) was estimated to be 444 degrees C by using the Hoffman-Weeks approach. The observed crystallization characteristics of PEDEKK were compared with those of the other members of the poly(arpl ether ketone) family.
Resumo:
Poly(ethylene glycol)-block-poly(butyl acrylate) synthesized by radical polymerization in a one-step procedure were characterized by gel permeation chromatography, infrared, IH-NMR spectroscopy, and differential scanning calorimetry (DSC). The crystalline property, emulsifying property, and phase transfer catalytic effect in the Williamson reaction were studied. It was found that the crystallinity of the copolymer increased with an increase in both the content and molecular weight of poly( ethylene oxide) (PEO) sequences. DSC curves showed two distinct crystallization temperature due to the heterogeneous nucleation and homogeneous nucleation crystallization. The casting solvent significantly affected the morphology and crystallinity of the solvent cast films. Both the emulsifying volume and the phase transfer catalytic efficiency in the Williamson reaction increased with the amount and PEO content of the block copolymers used, but decreased with an increase in the molecular weight of PEO sequences. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Poly(vinyl acetate-co-vinyl alcohol) copolymers (P(VAc-co-VA)) were synthesized by hydrolysis-alcoholysis of PVAc. The miscibility, crystallization, and morphology of poly(P-hydroxybutyrate) (PHB) and P(VAc-co-VA) blends were studied by differential scanning calorimetry, optical microscopy (OM), and SAXS. It is found that the P(VAc-co-VA)s with vinyl alcohol content of 9, 15, and 22 mol % will form a miscible phase with the amorphous part of PHB in the solution-cast samples. The melting-quenched samples of PHB/P(VAc-co-VA) blends with different vinyl alcohol content show different phase behavior. PHB and P(VAc-co-VA9) with low vinyl alcohol content (9% mel) will form a miscible blend in the melt state. PHB and P(VAc-co-VA15) with 15 mol % vinyl alcohol will not form miscible blends while PHB/P(VAc-co-VA15) blend with 20/80 composition will form a partially miscible blend in the melt state. PHB and P(VAc-co-VA22) with 22 mol % vinyl alcohol are not miscible in the whole composition range. The single glass transition temperature of the blends within the whole composition range suggests that PHB and P(VAc-co-VA9) are totally miscible in the melt. The crystallization kinetics was studied from the whole crystallization and spherulite growth for the miscible blends. The equilibrium melting point of PHB in the PHB/P(VAc-co-VA9) blends, which was obtained from DSC results using the Hoffman-Weeks equation, decreases with the increase in P(VAc-co-VA9) content. The negative value of the interaction parameter determined from the equilibrium melting point depression supports the miscibility between the components. The kinetics of spherulitic crystallization of PHB in the blends was analyzed according to nucleation theory in the temperature range studied in this work. The best fit of the data to the kinetic theory is obtained by employing WLF parameters and the equilibrium melting points obtained by DSC. The addition of P(VAc-co-VA) did not affect the crystalline structure of PHB, as shown by the WAXD results. The long periods of blends obtained from SAXS increase with the increase in P(VAc-co-VA) content. It indicates that the amorphous P(VAc-co-VA) was rejected to interlamellar phase corporating with the amorphous part of PHB.
Resumo:
A new side chain liquid crystalline poly[4-(methacryloxy)hexanoloxy-4'-benzyloxy biphenyl] was synthesized. The phase behavior of the monomer and homopolymer was studied. The monomer shows a smectic B phase, while the homopolymer shows a nematic phase. The nonmesogenic nonlinear optical group was introduced to synthesize a series of side chain liquid crystalline copolymers which also show a nematic phase. Owing to the liquid crystallinity of the copolymer has been the orientational stability improved, down the relax of the orientation slowed and the nonlinear optical properties enhanced.
Resumo:
A blend of polyethersulfone (PES) and polycarbonate (PC) with a ratio of 40/60 was studied by scanning electron microscopy (SEM), dynamic mechanical analysis, and transmission electron microscopy (TEM). It was found that the PES-PC blend is a partially miscible, two-phase system, and an interfacial layer exists between the phases of PES and PC. Specific interaction resulting from the n-complex between PES and PC provides the driving force for formation of the interfacial layer. In addition, phase inversion behavior was also observed for the 40/60 composition.
Resumo:
Isothermal crystallization and melting behavior of nylon 66 and its blends with poly(ether imide) (PEI) were investigated by differential scanning calorimetry. Crystallization kinetics such as overall rate constant Z and index n were calculated according to Avrami approach. Crystallization in the blend was retarded with respect to that of pure nylon 66 by incorporation of PEI with high glass transition temperature (T-g). The lowest growth rate of the spherulites was observed in the blends containing 10 and 15 wt% fraction of PEI. A transition temperature where positively birefringent spherulites disappear and negative birefringent spherulites develop was measured by thermal analysis. The transition temperature increased with content of PEI in the blends. A suitable range of isothermally crystallization temperatures, 238.5-246 degrees C, is suggested For determining the equilibrium melting points by means of Hoffman-Weeks approach.
Resumo:
Three kinds of PPV-based copolymers were synthesized and characterized. Their luminescent properties were investigated and discussed by PL spectrum, and time-dependence luminescent spectrum in film and solution stare. The results show that in the range of our study, the PL intensity and lifetime of luminescent decay increase with the increasing length of flexible segments and the solution diluting, indicating the tendency of the increase of luminescent efficiency.
Resumo:
The novel poly(aryl ether ketone)s with liquid crystallinity were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with 4,4'-difluorobenzophenone and their thermotropic liquid crystalline properties were characterized by DSC, PLM and WAXD, The copolymers containing 70% biphenol formed nematic phase while the copolymer containing 50% biphenol exhibited smectic texture, The banded textures were formed after shearing the sample in the nematic liquid crystalline state. The identification of the structures in each mesogenic phase has been carried out by combining WAXD with PLM and DSC.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible blends of LLDPE with styrene-butadiene-styrene triblock copolymer (SBS) has been investigated by means of C-13 CPMAS n.m.r. and d.s.c. techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/SBS blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and SBS, through solubilization of chemically identical segments of LLDPE-g-PS into the amorphous region of LLDPE acid PS block domain of SBS, respectively. It was also found that LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, with serious effects on the supermolecular structure of LLDPE. The effect of LLDPE-g-PS on the supermolecular structure of LLDPE in the LLDPE/SBS blends obviously depends on the composition of the blends, but has little dependence on the PS grafting yields of LLDPE-g-PS. (C) 1998 Elsevier Science Ltd. All rights reserved.