987 resultados para DFG-Schwerpunktprogramm 1158 - Antarktisforschung
Resumo:
There is currently a strong interest in mirrorless lasing systems(1), in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers(2) and photonic crystal lasers(3). The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success(4-6). Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing(7,8)) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity.
Resumo:
Measurements of the differential cross section and the transverse single-spin asymmetry, A(N), vs x(F) for pi(0) and eta mesons are reported for 0.4 < x(F) < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb(-1) was analyzed, which was recorded during p(up arrow) + p collisions at root s = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross section for pi(0), including the previously unmeasured region of x(F) > 0.55, is consistent with a perturbative QCD prediction, and the eta/pi(0) cross-section ratio agrees with existing midrapidity measurements. For 0.55 < x(F) < 0.75, the average A(N) for eta is 0.210 +/- 0.056, and that for pi(0) is 0.081 +/- 0.016. The probability that these two asymmetries are equal is similar to 3%.
Resumo:
Purpose: Myelodysplastic syndromes (MDS) are a group of disorders characterized by cytopenias, with a propensity for evolution into acute myeloid leukemias (AML). This transformation is driven by genomic instability, but mechanisms remain unknown. Telomere dysfunction might generate genomic instability leading to cytopenias and disease progression. Experimental Design: We undertook a pilot study of 94 patients with MDS (56 patients) and AML (38 patients). The MDS cohort consisted of refractory cytopenia with multilineage dysplasia (32 cases), refractory anemia (12 cases), refractory anemia with excess of blasts (RAEB) 1 (8 cases), RAEB2 (1 case), refractory anemia with ring sideroblasts (2 cases), and MDS with isolated del(5q) (1 case). The AML cohort was composed of AML-M4 (12 cases), AML-M2 (10 cases), AML-M5 (5 cases), AML-M0 (5 cases), AML-M1 (2 cases), AML-M4eo (1 case), and AML with multidysplasia-related changes (1 case). Three-dimensional quantitative FISH of telomeres was carried out on nuclei from bone marrow samples and analyzed using TeloView. Results: We defined three-dimensional nuclear telomeric profiles on the basis of telomere numbers, telomeric aggregates, telomere signal intensities, nuclear volumes, and nuclear telomere distribution. Using these parameters, we blindly subdivided the MDS patients into nine subgroups and the AML patients into six subgroups. Each of the parameters showed significant differences between MDS and AML. Combining all parameters revealed significant differences between all subgroups. Three-dimensional telomeric profiles are linked to the evolution of telomere dysfunction, defining a model of progression from MDS to AML. Conclusions: Our results show distinct three-dimensional telomeric profiles specific to patients with MDS and AML that help subgroup patients based on the severity of telomere dysfunction highlighted in the profiles. Clin Cancer Res; 18(12); 3293-304. (C) 2012 AACR.
Resumo:
A specific separated-local-field NMR experiment, dubbed Dipolar-Chemical-Shift Correlation (DIPSHIFT) is frequently used to study molecular motions by probing reorientations through the changes in XH dipolar coupling and T-2. In systems where the coupling is weak or the reorientation angle is small, a recoupled variant of the DIPSHIFT experiment is applied, where the effective dipolar coupling is amplified by a REDOR-like pi-pulse train. However, a previously described constant-time variant of this experiment is not sensitive to the motion-induced T-2 effect, which precludes the observation of motions over a large range of rates ranging from hundreds of Hz to around a MHz. We present a DIPSHIFT implementation which amplifies the dipolar couplings and is still sensitive to T-2 effects. Spin dynamics simulations, analytical calculations and experiments demonstrate the sensitivity of the technique to molecular motions, and suggest the best experimental conditions to avoid imperfections. Furthermore, an in-depth theoretical analysis of the interplay of REDOR-like recoupling and proton decoupling based on Average-Hamiltonian Theory was performed, which allowed explaining the origin of many artifacts found in literature data. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Termites are social cockroaches and this sociality is founded on a high plasticity during development. Three molting types (progressive, stationary and regressive molts) are fundamental to achieve plasticity during alate/sexual development, and they make termites a major challenge to any model on endocrine regulation in insect development. As the endocrine signatures underpinning this plasticity are barely understood, we studied the developmental dynamics and their underlying juvenile hormone OH) titers in a wood-dwelling termite. Cryptotermes secundus, which is characterized by an ancestral life style of living in dead wood and individuals being totipotent in development. The following general pattern elements could be identified during winged sexual development (i) regressive molts were accompanied by longer intermolt periods than other molting types, (ii) JH titers decreased gradually during the developmental transition from larva (immatures without wing buds), to nymph (immatures with wing buds), to winged adult, (iii) in all nymphal stages, the JH titer rose before the next molt and dropped thereafter within the first week, (iv) considerable variation in JH titers occurred in the midphase of the molting cycle of the 2nd and 3rd nymphal instar, inferring that this variation may reflect the underlying endocrine signature of each of the three molting types, (v) the 4th nymphal instar, the shortest of all, seems to be a switch point in development, as nymphs in this stage mainly developed progressively. When comparing these patterns with endocrine signatures seen in cockroaches, the developmental program of Cryprotermes can be interpreted as a co-option and repetitive use of hormonal dynamics of the post dorsal-closure phase of cockroach embryonic development. (C) 2012 Elsevier Ltd. All tights reserved.
Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum
Resumo:
The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to homogeneity. The purified protein crystallized in space group P1, with unit-cell parameters a = 72, b = 157, c = 159 angstrom, a = 105, beta = 101, ? = 95 degrees. The resulting crystals diffracted to a maximal resolution of 2.24 angstrom and the structure has been solved by molecular replacement, with 16 monomers in the asymmetric unit. The 16 monomers are arranged into four independent tetramers, in agreement with previous reports demonstrating the tetrameric solution state of PfMDH. The X-ray structure of PfMDH is expected to clarify the differences in catalysis by PfMDH compared with other MDH family members and to provide a basis for the structure-based design of specific PfMDH inhibitors as well as general MDH inhibitors.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.
Resumo:
The conjugated frustrated phosphane/borane Lewis pairs formed by 1,1-carboboration of a substituted diphenylphosphino acetylene, undergo a synergistic 1,1-addition reaction to n-butyl isocyanide with formation of new B-C and P-C bonds to the former isonitrile carbon atom. Using tert-butyl isocyanide dynamic behaviour between the isocyanide-[B] adduct and the 1,1-addition product formation was observed in solution. The different modes of isocyanide binding to the FLPs in the solid state were characterized using X-ray crystal structure analyses and comprehensive 11B and 31P solid-state magicangle- spinning (MAS-) NMR experiments. The free FLP, the Lewis adduct at the borane group, and the cyclic product resulting from isocyanide addition to both reaction centers, can be differentiated via 11B and 31P isotropic chemical shifts, 11B nuclear electric quadrupole coupling constants, isotropic indirect 11B-31P spin-spin coupling constants, and 11B...31P internuclear distances measured by rotational echo double resonance.
Resumo:
Tailoring properties of materials by femtosecond laser processing has been proposed in the last decade as a powerful approach for technological applications, ranging from optics to biology. Although most of the research output in this field is related to femtosecond laser processing of single either organic or inorganic materials, more recently a similar approach has been proposed to develop advanced hybrid nanomaterials. Here, we report results on the use of femtosecond lasers to process hybrid nanomaterials, composed of polymeric and glassy matrices containing metal or semiconductor nanostructures. We present results on the use of femtosecond pulses to induce Cu and Ag nanoparticles in the bulk of borate and borosilicate glasses, which can be applied for a new generation of waveguides. We also report on 3D polymeric structures, fabricated by two-photon polymerization, containing Au and ZnO nanostructures, with intense two-photon fluorescent properties. The approach based on femtosecond laser processing to fabricate hybrid materials containing metal or semiconductor nanostructures is promising to be exploited for optical sensors and photonics devices.
Resumo:
Excitonic dynamics in a hybrid dot-well system composed of InAs quantum dots (QDs) and an InGaAs quantum well (QW) is studied by means of femtosecond pump-probe reflection and continuous wave (cw) photoluminescence (PL) spectroscopy. The system is engineered to bring the QW ground exciton state into resonance with the third QD excited state. The resonant tunneling rate is varied by changing the effective barrier thickness between the QD and QW layers. This strongly affects the exciton dynamics in these hybrid structures as compared to isolated QW or QD systems. Optically measured decay times of the coupled system demonstrate dramatically different response to temperature change depending on the strength of the resonant tunneling or coupling strength. This reflects a competition between purely quantum mechanical and thermodynamical processes.
Resumo:
The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).