938 resultados para DC electrical conductivity
Resumo:
During the period from October/92 to September/94 experiments were carried out at the Seed Laboratory, FCAV/UNESP, Jaboticabal, SP, Brazil, using soybean seeds of different genotypes in order to evaluate the effect of genotype on the electrical conductivity (bulk conductivity) of soaked seeds. Seed moisture content (105+/-3 degrees C, 24 h), standard germination (four 50-seed samples, paper towel, 30 degrees C), and vigor-accelerated aging (42 degrees C, 48 h) were first determined. Undamaged soybean seeds were soaked in deionized water (four 50-seed samples, 75 ml, 25 degrees C, 24 h) and electrical conductivity (mu mhos.cm(-1).g(-1)) was measured. Significant differences in conductivity were observed among genotypes having the same pattern of germination and vigor. The results have showed that electrical conductivity can be significantly influenced by genotype.
Resumo:
The dielectric strength of films made from poly(ethylene terephthalate) (PET) coated with a thin layer of polyaniline (PANI) was studied. The PANI layer was deposited on the PET films by the 'in situ' chemical polymerization method. The PANI layer of the PANI/PET films was undoped in NH4OH 0.1 M solution and re-doped with aqueous HCl solution under different pH values varying from 1 to 10. Electric breakdown measurements were performed by applying a voltage ramp and the results showed a dependence of the dielectric strength on the pH of the doping solution due to the changes in the electrical conductivity of the PANI layer. The dielectric strength of PET/PANI films treated under higher pH conditions showed an electric strength about 30% larger than the PET films, since it leads to a non-conductive PANI layer.
Resumo:
In this work films were produced by the plasma enhanced chemical vapor deposition (PECVD) of titanium tetraisopropoxide-oxygen-helium mixtures and irradiated with 150 keV singly-charged nitrogen ions (N(+)) at fluences, phi, between 10(14) and 10(16) cm(-2). Irradiation resulted in compaction, which reached about 40% (measured via the film thickness) at the highest fluence. Infrared reflection-absorption spectroscopy (IRRAS) revealed the presence of Ti-O bonds in all films. Both O-H and C-H groups were present in the as-deposited films, but the density of each of these decreased with increasing phi and was absent at high phi, indicating a loss of hydrogen. X-ray photoelectron spectroscopy (XPS) analyses revealed an increase in the C to Ti atomic ratio as phi increased, while the O to Ti ratio hardly altered, remaining at around 2.8. The optical gap of the films, derived from data obtained by ultraviolet-visible spectroscopy (UVS), remained at about 3.6 eV for all fluences except the highest, for which an abrupt fall to around 1.0 eV was observed. For the irradiated films, the electrical conductivity, measured using the two-point method, showed a systematic increase with increasing phi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to evaluate the effect of mechanical damage and physiological events in harvesting and processing of soybean cv. Mosoy RR 8000. The samples were taken during harvest manual, mechanical harvesting and during processing (receipt, pre-cleaning, cleaning, spiral separator, classification and gravity table). The physiological and physical quality was analized through the purity, germination, vigor (first germination count, seedling dry matter, accelerated aging, electrical conductivity, tetrazolium, mechanical damages and seedling field emergence) tests. The statistical design used was a entirely randomized with nine treatments (9 sampling points) with 4 replications, being the means compared by the Tuckey test at 5% probability. In the purity and seedling field emergence were observed highly significative difference between the sampling process, also this differences were obtained the first germination count, seedling dry weight matter, accelerated aging and electrical conductivity which showed smaller results for the mechanical harvesting when compared with the manual harvesting. The germination was obtained differences at 5% for the manual harvesting in relation to the mechanical harvesting were obtained smaller results, being the main cause of reducing the soybean seed quality, when compared with the manual harvesting.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PANI-LiNi0.8Co0.2O2 nanocomposite material with improved properties as positive electrode was prepared by a new synthesis method. In a first step, LiNi0.8Co0.2O2 mixed oxide in the form of a fine powder was dispersed in aniline and this suspension was sprayed on the surface of an aqueous solution of HCl and ammonium peroxodisulfate. The resulting PANI-LiNi0.8Co0.2O2 nanocomposite is spontaneously formed by polymerization of the aniline molecules present in the drops together with small particles of the oxide. This method induces the formation of nanocomposites showing a better distribution of the oxide particles in the polymer matrix than that observed in related PANI-LiNi0.8Co0.2O2 microcomposites prepared under ultrasound irradiation to disperse the oxide particles during PANI polymerization. Measurements of electrical conductivity and zeta potential, as well as structural characterization of PANI-LiNi0.8Co0.2O2 nanocomposites, reveal the existence of relatively strong interactions between the conducting polymer and the oxide particles. This feature determines higher values of the electrical conductivity (0.5 S cm(-1)) and of the average operative voltage (3.6 V), as well as of other technological parameters of the nanocomposite when it is used as the positive electrode of rechargeable lithium batteries, in comparison to those of the related microcomposite materials already reported.
Resumo:
Forage plants, particularly the Brachiaria genus, are the main source of nutrients for cattle and are at times the only feed offered. The concentration of elements in the plant is related to the soil, fertilization, climate, season, variety, and cultural practices. An experiment on dystrophic Red-Yellow Latosol soil in Aracatuba, São Paulo was performed to evaluate the effects of the doses and sources of nitrogen fertilizers on the chemical properties of the soil and the dry matter yield of the grass Brachiaria brizantha cv. Xaraes. A randomized block design was employed involving three replicates in a 3 x 3 factorial, with three doses (100, 200 and 400 kg ha(-1) year(-1)) and three sources (Ajifer (R) L40, ammonium sulfate and urea) of nitrogen and a control treatment without nitrogen (zero). The greatest effects on the chemical properties of the soil as a function of nitrogen fertilization in the Xaraes grass were observed in the topsoil. The use of Ajifer (R) L40 and ammonium sulfate as sources of nitrogen had similar effects, with an increase in the sulfur content and a reduction in the soil pH at the superficial layer. The use of the fertilizers Ajifer (R) L40, ammonium sulfate and urea did not affect the micronutrient contents, except for Fe and Mn, and did not alter the sodium concentration or electrical conductivity of the soil. The dry matter yield of Xaraes grass was similar for all three nitrogen sources.
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
This work was carried out in order to evaluate if there was a relationship between genotypes and the physiological soybean (Glycine max L.) seed quality. It was conducted during three years using seven cultivars each year. The seeds were harvested at: 1) yellow radicle or expanded pod stage, 2) yellow pod or physiological maturity (R7), 3) harvest maturity (R8), and 4) R8 + 21 days delay. Seed moisture content, standard germination, and vigor tests were performed. The germination and vigor evaluated by accelerated aging and electrical conductivity did not show physiological seed quality differences among genotypes as harvested at physiological maturity. Then, the evaluation of seed germination and vigor, when the environment is not a considered factor, is not an efficient method to show differences among soybean genotypes in terms of seed quality.
Resumo:
The thermal behavior of blends of poly(vinylidene fluoride), or PVDF, and poly(o-methoxyaniline) doped with toluene sulfonic acid was studied by thermogravimetic analysis, electrical conductivity measurements, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Blends with thermal and electrical conductivity stabler than the conductive polymer alone were obtained. Nevertheless, degradation occurs after a long period of time (500 h) at high temperatures. The possible association of the conductivity decay with dopant loss, degradation and structural and morphological changes of the blend is discussed. (C) 2000 Elsevier Science Ltd.
Resumo:
Composites produced during the in situ chemical polymerization of aniline on top of a poly(ethylene terephthalate) (PET) film, in different conditions, were studied by open-circuit potential (Voc), ultraviolet-visible, and infrared spectroscopy, electrical conductivity measurements, scanning electron microscopy, and atomic force microscopy. The polymerization monitoring by Voc showed a maximum associated with the intermediate pernigraniline oxidation state and a final formation of polyaniline (PANI) in the doped emeraldine salt (ES) form. Furthermore, high electrical conductivity values were obtained for the PANI-ES coating prepared under selected conditions. A globular formation was observed for the doped PANI-ES coating with globules of sizes of the same order and same shape of the PET, demonstrating the influence of the substrate on the coating morphology.
Resumo:
The abundance of zooplankton in two lakes of Southwest Amazonia was studied for 10 months in different regions and at different periods of the day. The lakes were Lago Amapá, located at 10°02′36″S, 67°50′24″W, and Lago Pirapora, at 9°27′21″S, 67°31′39″. Both lakes are characterized as oxbow lakes. The aim of this study was to compare the pelagic and littoral regions, as well as to determine differences in the distribution of zooplankton in the water column in the morning and at night. Collections were made by filtering water through a 55μm zooplankton net into a 5L Van Dorn bottle, collecting 4L from the top and 5L from the middle and bottom layers, totaling 14L of water for each sampling location. In addition, physical and chemical parameters were measured, including transparency, temperature, pH, dissolved oxygen, electrical conductivity and turbidity. Anova (analysis of variance) and Tukey's test were used. There was no statistically significant difference between the regions studied, nor between the two time periods examined. The results of the Pearson correlation (p<0.05) demonstrated that the physical and chemical characteristics of the water correlated with the cladocerans Moina spp. (represented by M. minuta and M. reticulata) and Ceriodaphnia cornuta, and that Daphnia gessneri was associated with Chaoboridae.
Resumo:
Aim: To evaluate the release of calcium ions, pH and conductivity of a new experimental dental cement (EC) and to compare them with those of mineral trioxide aggregate (MTA-Angelus). Methodology: Five samples of each cement were prepared using plastic tubes 1 mm in diameter and 10 mm long. Each sample was sealed in a test tube containing 10 mL deionized water which was analysed after 24, 48, 72, 96, 192, 240 and 360 h for pH, electrical conductivity and calcium release. The concentration of calcium ions was obtained through atomic absorption spectroscopy technique. The data were analysed statistically using the analysis of variance (ANOVA) and the Student's test (t-test). Results: The pH of the storage solutions was not affected by the material and the interaction of material with time (P > 0.05). However, the time of immersion was significant (P < 0.01) for both materials. For the electric conductivity and calcium release, the interaction of material with time was statistically significant (P < 0.01), indicating that EC and MTA-Angelus did not behave in a similar manner. Conclusions: The experimental cement released calcium and increased the pH of the storage solutions in a similar manner to MTA-Angelus. However, EC showed significantly higher calcium release than commercial MTA-Angelus after 24 h. © 2005 International Endodontic Journal.