920 resultados para Curry-Howard
Resumo:
Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.
Resumo:
OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an interdisciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to traffic emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benefits include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public.
Resumo:
The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined pi-pi stacked complexes. The dithiolfunctionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.
Resumo:
Background: Medication errors in general practice are an important source of potentially preventable morbidity and mortality. Building on previous descriptive, qualitative and pilot work, we sought to investigate the effectiveness, cost-effectiveness and likely generalisability of a complex pharm acist-led IT-based intervention aiming to improve prescribing safety in general practice. Objectives: We sought to: • Test the hypothesis that a pharmacist-led IT-based complex intervention using educational outreach and practical support is more effective than simple feedback in reducing the proportion of patients at risk from errors in prescribing and medicines management in general practice. • Conduct an economic evaluation of the cost per error avoided, from the perspective of the National Health Service (NHS). • Analyse data recorded by pharmacists, summarising the proportions of patients judged to be at clinical risk, the actions recommended by pharmacists, and actions completed in the practices. • Explore the views and experiences of healthcare professionals and NHS managers concerning the intervention; investigate potential explanations for the observed effects, and inform decisions on the future roll-out of the pharmacist-led intervention • Examine secular trends in the outcome measures of interest allowing for informal comparison between trial practices and practices that did not participate in the trial contributing to the QRESEARCH database. Methods Two-arm cluster randomised controlled trial of 72 English general practices with embedded economic analysis and longitudinal descriptive and qualitative analysis. Informal comparison of the trial findings with a national descriptive study investigating secular trends undertaken using data from practices contributing to the QRESEARCH database. The main outcomes of interest were prescribing errors and medication monitoring errors at six- and 12-months following the intervention. Results: Participants in the pharmacist intervention arm practices were significantly less likely to have been prescribed a non-selective NSAID without a proton pump inhibitor (PPI) if they had a history of peptic ulcer (OR 0.58, 95%CI 0.38, 0.89), to have been prescribed a beta-blocker if they had asthma (OR 0.73, 95% CI 0.58, 0.91) or (in those aged 75 years and older) to have been prescribed an ACE inhibitor or diuretic without a measurement of urea and electrolytes in the last 15 months (OR 0.51, 95% CI 0.34, 0.78). The economic analysis suggests that the PINCER pharmacist intervention has 95% probability of being cost effective if the decision-maker’s ceiling willingness to pay reaches £75 (6 months) or £85 (12 months) per error avoided. The intervention addressed an issue that was important to professionals and their teams and was delivered in a way that was acceptable to practices with minimum disruption of normal work processes. Comparison of the trial findings with changes seen in QRESEARCH practices indicated that any reductions achieved in the simple feedback arm were likely, in the main, to have been related to secular trends rather than the intervention. Conclusions Compared with simple feedback, the pharmacist-led intervention resulted in reductions in proportions of patients at risk of prescribing and monitoring errors for the primary outcome measures and the composite secondary outcome measures at six-months and (with the exception of the NSAID/peptic ulcer outcome measure) 12-months post-intervention. The intervention is acceptable to pharmacists and practices, and is likely to be seen as costeffective by decision makers.