1000 resultados para Crop Improvement
Resumo:
This study has two main objectives. First, the phlebotomy process at the St. Catharines Site of the Niagara Health System is investigated, which starts when an order for a blood test is placed, and ends when the specimen arrives at the lab. The performance measurement is the flow time of the process, which reflects concerns and interests of both the hospital and the patients. Three popular operational methodologies are applied to reduce the flow time and improve the process: DMAIC from Six Sigma, lean principles and simulation modeling. Potential suggestions are provided for the St. Catharines Site, which could result in an average of seven minutes reduction in the flow time. The second objective addresses the fact that these three methodologies have not been combined before in a process improvement effort. A structured framework combining them is developed to benefit future study of phlebotomy and other hospital processes.
Resumo:
The article discusses problems with the handling of livestock and the conclusion of the article states "rough handling of livestock is not only inhumane, but can cause excessive losses due to sickness and slower growth...careful handling of livestock in all phases of production is prerequisite to a profitable business".
Resumo:
Statement (handwritten, 3 pages) in which John O’Connor states that his wheat crop of 1834 was damaged. A fence was also down which resulted in his wheat crop being destroyed by cattle and pigs. The defendants had to pay the plaintiff for damages. S. D. Woodruff was the arbitrator in this case, Aug. 1835.
Resumo:
Chart of station 2, crop sections of the old back ditch on the south side of the feeder, station 45, station 118 and the total length from the culvert to lot no. 5. This is signed by Fred Holmes, April 13, 1857.
Resumo:
UANL
Resumo:
Le suivi thérapeutique est recommandé pour l’ajustement de la dose des agents immunosuppresseurs. La pertinence de l’utilisation de la surface sous la courbe (SSC) comme biomarqueur dans l’exercice du suivi thérapeutique de la cyclosporine (CsA) dans la transplantation des cellules souches hématopoïétiques est soutenue par un nombre croissant d’études. Cependant, pour des raisons intrinsèques à la méthode de calcul de la SSC, son utilisation en milieu clinique n’est pas pratique. Les stratégies d’échantillonnage limitées, basées sur des approches de régression (R-LSS) ou des approches Bayésiennes (B-LSS), représentent des alternatives pratiques pour une estimation satisfaisante de la SSC. Cependant, pour une application efficace de ces méthodologies, leur conception doit accommoder la réalité clinique, notamment en requérant un nombre minimal de concentrations échelonnées sur une courte durée d’échantillonnage. De plus, une attention particulière devrait être accordée à assurer leur développement et validation adéquates. Il est aussi important de mentionner que l’irrégularité dans le temps de la collecte des échantillons sanguins peut avoir un impact non-négligeable sur la performance prédictive des R-LSS. Or, à ce jour, cet impact n’a fait l’objet d’aucune étude. Cette thèse de doctorat se penche sur ces problématiques afin de permettre une estimation précise et pratique de la SSC. Ces études ont été effectuées dans le cadre de l’utilisation de la CsA chez des patients pédiatriques ayant subi une greffe de cellules souches hématopoïétiques. D’abord, des approches de régression multiple ainsi que d’analyse pharmacocinétique de population (Pop-PK) ont été utilisées de façon constructive afin de développer et de valider adéquatement des LSS. Ensuite, plusieurs modèles Pop-PK ont été évalués, tout en gardant à l’esprit leur utilisation prévue dans le contexte de l’estimation de la SSC. Aussi, la performance des B-LSS ciblant différentes versions de SSC a également été étudiée. Enfin, l’impact des écarts entre les temps d’échantillonnage sanguins réels et les temps nominaux planifiés, sur la performance de prédiction des R-LSS a été quantifié en utilisant une approche de simulation qui considère des scénarios diversifiés et réalistes représentant des erreurs potentielles dans la cédule des échantillons sanguins. Ainsi, cette étude a d’abord conduit au développement de R-LSS et B-LSS ayant une performance clinique satisfaisante, et qui sont pratiques puisqu’elles impliquent 4 points d’échantillonnage ou moins obtenus dans les 4 heures post-dose. Une fois l’analyse Pop-PK effectuée, un modèle structural à deux compartiments avec un temps de délai a été retenu. Cependant, le modèle final - notamment avec covariables - n’a pas amélioré la performance des B-LSS comparativement aux modèles structuraux (sans covariables). En outre, nous avons démontré que les B-LSS exhibent une meilleure performance pour la SSC dérivée des concentrations simulées qui excluent les erreurs résiduelles, que nous avons nommée « underlying AUC », comparée à la SSC observée qui est directement calculée à partir des concentrations mesurées. Enfin, nos résultats ont prouvé que l’irrégularité des temps de la collecte des échantillons sanguins a un impact important sur la performance prédictive des R-LSS; cet impact est en fonction du nombre des échantillons requis, mais encore davantage en fonction de la durée du processus d’échantillonnage impliqué. Nous avons aussi mis en évidence que les erreurs d’échantillonnage commises aux moments où la concentration change rapidement sont celles qui affectent le plus le pouvoir prédictif des R-LSS. Plus intéressant, nous avons mis en exergue que même si différentes R-LSS peuvent avoir des performances similaires lorsque basées sur des temps nominaux, leurs tolérances aux erreurs des temps d’échantillonnage peuvent largement différer. En fait, une considération adéquate de l'impact de ces erreurs peut conduire à une sélection et une utilisation plus fiables des R-LSS. Par une investigation approfondie de différents aspects sous-jacents aux stratégies d’échantillonnages limités, cette thèse a pu fournir des améliorations méthodologiques notables, et proposer de nouvelles voies pour assurer leur utilisation de façon fiable et informée, tout en favorisant leur adéquation à la pratique clinique.
Resumo:
Zinc salts of ethyl, isopropyl, and butyl xanthates are prepared in the laboratory, and the effect of these xanthates with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of HAF-filled nitrile butadiene rubber (NBR) compounds has been studied at different temperatures. The cure times of these compounds have been compared with that of NBR compounds containing TMTD/MBTS. The rubber compounds with the three xanthate accelerators and ZDC are cured at various temperatures from 60 to 150°C. The sheets are molded and properties such as tensile strength, tear strength, cross-link density, elongation at break, compression set, abrasion resistance, flex resistance, etc. have been evaluated. The properties show that zinc salt of the xanthate/ZDC accelerator system has a positive synergistic effect on the cure rate and mechanical properties of NBR compounds.
Resumo:
Filled compounds of natural rubber, isobutylene-isoprene rubber and styrene-butadiene rubber compounds were extruded through a laboratory extruder by varying the feeding rate at different temperatures and revolutions per minute. The extruded compounds were vulcanized up to their optimum cure times and the mechanical properties of the vulcanizates were determined. The properties suggest that there is a particular feeding rate in the starved fed region which results in maximum mechanical properties. The study shows that running the extruder at a slightly starved condition is an attractive means of improving the physical properties.
Resumo:
Department of Atmospheric Sciences, Cochin University of Science and Technology
Resumo:
Dept. of Marine Biology, Microbiology and Biochemistry,CUSAT
Resumo:
In the present investigation, the impacts of the variability of the climatic parameters on the yields of major crops grown in the State are analyzed. In particular, the effects of rainfall variability on the water balances of the different regions in the State have been studied. Through this analysis the drought climatology of the region has been studied along with an overview of the climatic shifts involved in individual years. The relationship between weather parameters and crop yields over the State has been analyzed with case studies of two crops- coconut and paddy. Crop-weather models for forecasting coconut and paddy yields have been developed, which could be used for planning purposes
Resumo:
Usually, under rainfed conditions the growing period exists in the humid months. Hence, for agricultural planning knowledge about the variabilities of the duration of the humid seasons are very much needed. The crucial problem affecting agriculture is the persistency in receiving a specific amount of rainfall during a short period. Agricultural operations and decision making are highly dependent on the probability of receiving given amounts of rainfall; such periods should match the water requirements of different phenological phases of the crops. While prolonged dry periods during sensitive phases are detrimental to their growth and lower the yields, excess of rainfall causes soil erosion and loss of soil nutrients. These factors point to the importance of evaluation of wet and dry spells. In this study the weekly rainfall data have been analysed to estimate the probability of wet and dry periods at all selected stations of each agroclimatic zone and the crop growth potentials of the growing seasons have been analysed. The thesis consists of six Chapters.
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production.This paper describes the application of wireless sensor network for crop monitoring in the paddy fields of kuttand, a region of Kerala, the southern state of India.
Resumo:
Mobile Ad-hoc Networks (MANETS) consists of a collection of mobile nodes without having a central coordination. In MANET, node mobility and dynamic topology play an important role in the performance. MANET provide a solution for network connection at anywhere and at any time. The major features of MANET are quick set up, self organization and self maintenance. Routing is a major challenge in MANET due to it’s dynamic topology and high mobility. Several routing algorithms have been developed for routing. This paper studies the AODV protocol and how AODV is performed under multiple connections in the network. Several issues have been identified. The bandwidth is recognized as the prominent factor reducing the performance of the network. This paper gives an improvement of normal AODV for simultaneous multiple connections under the consideration of bandwidth of node.
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.