992 resultados para Crack Numerical Density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework, taking into account thermal and expansion effects. A finite-range momentum and density-dependent two-body effective interaction is employed for this purpose. The role of mass, isospin, and equation of state (EOS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real part of the optical potential for heavy ion elastic scattering is obtained by double folding of the nuclear densities with a density-dependent nucleon-nucleon effective interaction which was successful in describing the binding, size, and nucleon separation energies in spherical nuclei. A simple analytical form is found to differ from the resulting potential considerably less than 1% all through the important region. This analytical potential is used so that only few points of the folding need to be computed. With an imaginary part of the Woods-Saxon type, this potential predicts the elastic scattering angular distribution in very good agreement with experimental data, and little renormalization (unity in most cases) is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the curl of the superfluid velocity field is different from zero only on a circumference of a given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure, and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of front propagation in the presence of inertia. We extend the analytical approach for the overdamped problem to this case, and present numerical results to support our theoretical predictions. Specifically, we conclude that the velocity and shape selection problem can still be described in terms of the metastable, nonlinear, and linear overdamped regimes. We study the characteristic relaxation dynamics of these three regimes, and the existence of degenerate (¿quenched¿) solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present computational approaches as alternatives to a recent microwave cavity experiment by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from triangles. A straightforward proof of isospectrality is given, based on the mode-matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a phase-field model for the dynamics of the interface between two inmiscible fluids with arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these equations to first order in the interface thickness. We also compute the effect of such corrections on the linear dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In particular, the convergence appears to be slower for high viscosity contrasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Capillary rarefaction is a hallmark of untreated hypertension. Recent data indicate that rarefaction may be reversed by antihypertensive treatment in nondiabetic hypertensive patients. Despite the frequent association of diabetes with hypertension, nothing is known on the capillary density of treated diabetic patients with hypertension. METHODS: We enrolled 21 normotensive healthy, 25 hypertensive only, and 21 diabetic (type 2) hypertensive subjects. All hypertensive patients were treated with a blocker of the renin-angiotensin system, and a majority had a home blood pressure ≤135/85 mmHg. Capillary density was assessed with videomicroscopy on dorsal finger skin and with laser Doppler imaging on forearm skin (maximal vasodilation elicited by local heating). RESULTS: There was no difference between any of the study groups in either dorsal finger skin capillary density (controls 101 ± 11 capillaries/mm(2) , nondiabetic hypertensive 99 ± 16, diabetic hypertensive 96 ± 18, p > 0.5) or maximal blood flow in forearm skin (controls 666 ± 114 perfusion units, nondiabetic hypertensive 612 ± 126, diabetic hypertensive 620 ± 103, p > 0.5). CONCLUSIONS: Irrespective of the presence or not of type 2 diabetes, capillary density is normal in hypertensive patients with reasonable control of blood pressure achieved with a blocker of the renin-angiotensin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in a circular Hele-Shaw cell rotating with angular velocity Omega. The instability of the leading interface (oil displacing air) is driven by the density difference in the presence of centrifugal forcing, while the instability of the trailing interface (air displacing oil) is driven by the large viscosity contrast. A linear stability analysis shows that the stability of the two interfaces is coupled through the pressure field already at a linear level. We have performed experiments in a dry cell and in a cell coated with a thin fluid layer on each plate, and found that the stability depends substantially on the wetting conditions at the leading interface. Our experimental results of the number of fingers resulting from the instability compare well with the predictions obtained through a numerical integration of the coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing fingers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report variational calculations, in the hypernetted-chain (HNC)-Fermi-HNC scheme, of one-body density matrices and one-particle momentum distributions for 3He-4He mixtures described by a Jastrow correlated wave function. The 4He condensate fractions and the 3He strength poles are examined and compared with the Monte Carlo available results. The agreement has been found to be very satisfactory. Their density dependence is also studied.