972 resultados para Coulomb oscillation
Resumo:
Explaining "Tragedy of the Commons" of evolution of cooperation remains one of the greatest problems for both biology and social science. Asymmetrical interaction, which is one of the most important characteristics of cooperative system, has not been sufficiently considered in the existing models of the evolution of cooperation. Considering the inequality in the number and payoff between the cooperative actors and recipients in cooperation systems, discriminative density-dependent interference competition will occur in limited dispersal systems. Our model and simulation show that the local but not the global stability of a cooperative interaction can be maintained if the utilization of common resource remains unsaturated, which can be achieved by density-dependent restraint or competition among the cooperative actors. More intense density dependent interference competition among the cooperative actors and the ready availability of the common resource, with a higher intrinsic contribution ratio of a cooperative actor to the recipient, will increase the probability of cooperation. The cooperation between the recipient and the cooperative actors can be transformed into conflict and, it oscillates chaotically with variations of the affecting factors under different environmental or ecological conditions. The higher initial relatedness (i.e. similar to kin or reciprocity relatedness), which is equivalent to intrinsic contribution ratio of a cooperative actor to the recipient, can be selected for by penalizing less cooperative or cheating actors but rewarding cooperative individuals in asymmetric systems. The initial relatedness is a pivot but not the aim of evolution of cooperation. This explains well the direct conflict observed in almost all cooperative systems.
Resumo:
A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.
Resumo:
Any linearised theory of the initiation of friction-excited vibration via instability of the state of steady sliding requires information about the dynamic friction force in the form of a frequency response function for sliding friction. Recent measurements of this function for an interface consisting of a nylon pin against a glass disc are used to probe the underlying constitutive law. Results are compared to linearised predictions from the simplest ratestate model of friction, and a ratetemperature model. In both cases the observed variation with frequency is not compatible with the model predictions, although there are some significant points of similarity. The most striking result relates to variation of the normal load: any theory embodying the Coulomb relation F∝N would predict behaviour entirely at variance with the measurements, even though the steady friction force obtained during the same measurements does follow the Coulomb law. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present paper deals with the influence of El Nino event on the summer monsoon rainfall over Pakistan. The correlation between monthly rainfall of summer monsoon season and bi-Monthly Multivariate ENSO Index (MEI) has been calculated to see the influence of El Nino on the summer monsoon rainfall. MEI is bimonthly ENSO Index pertaining to the period from first week of previous month to first week of the month under consideration. While study the correlation's with the ENSO events out side the Pacific Ocean MEI is more appropriate than other indices like Southern Oscillation Index (SOI) as MEI integrates complete information on ENSO viz. six oceanic and meteorological variables over the tropical Pacific. The results of the study show that there is a tendency of reduction in summer monsoon rainfall over Pakistan during El Nino years. The deficiency in % rainfall is statistically significant up to 90% level during July and September months. It is interesting to note that Pakistan receives more than normal rainfall during summer monsoon season in the immediate following year after the El Nino event. The correlation analysis is also performed on the summer monsoon months for individual provinces of Pakistan. All provinces receive deficient rainfall during monsoon months. The deficiency in rainfall over Punjab during all monsoon months is significant, whereas the deficiency in rainfall is significant during July and August over NWFP and Sindh respectively. No significant impact of El Nino on the summer monsoon rainfall over Baluchistan is observed.
Resumo:
Combustion oscillations in gas turbines can result in serious damage. One method used to predict such oscillations is to analyze the combustor acoustics using a simple linear model. Such a model requires a flame transfer function to describe the response of the heat release to flow perturbations inside the combustor. This paper reports on the application of Planar Laser Induced Fluorescence (PLIF) of OH radicals to analyze the response of a lean premixed flame to oncoming flow perturbations. Both self-excited oscillations and low amplitude forced oscillations at various frequencies are investigated in an atmospheric pressure model combustor rig. In order to visualize fluctuations of local fuel distribution, acetone-PLIF was also applied in non-reacting and acoustically forced flows at oscillation frequencies of 200 Hz and 510 Hz, respectively. OH-PLIF images were acquired over a range of operating parameters. The results presented in this paper originate from data sets acquired at fixed phase angles during the oscillation cycle. Comparative experiments in self excited and forced acoustic oscillations show that the flame and the combustion intensity develop similarly throughout the pressure cycle in both cases. Although the peak fluorescence intensities differ between self excited and the forced instabilities, there is a clear correspondence in the observed frequency and phase information from the two cases. This result encourages a comparison of the OH-PLIF and the acetone-PLIF results. Quantitative measurements of the equivalence ratio in specific areas of the measurement plane offer insight on the complex phenomena coupling acoustic perturbations, i.e. flow velocity fluctuations, to fluctuations in fuel distribution and combustion intensity, ultimately resulting in self excited combustion oscillations.
Resumo:
This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer. © 2011 American Society of Civil Engineers.
Resumo:
Some of the earliest theoretical speculation, stimulated by the growth of semiconductor superlattices, focused on novel devices based on vertical transport through engineered band structures; Esaki and Tsu promised Bloch oscillators in narrow mini-band systems and Kazarinov and Suris contemplated electrically stimulated intersubband transitions as sources of infrared radiation. Nearly twenty years later these material systems have been perfected, characterized and understood and experiments are emerging that test some of these original concepts for novel submillimetre wave electronics. Here we describe recent experiments on intersubband emission in quantum wells stimulated by resonant tunnelling currents. A critical issue at this time is devising a way to achieve population inversion. Other experiments explore 'saturation' effects in narrow miniband transport. Thermal saturation may be viewed as a precursor to Bloch oscillation if the same effects can be induced with an applied electric field.
Resumo:
This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a `spike', and the second with a longer lengthscale disturbance known as a `modal oscillation'. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.
Resumo:
Instability triggering and transient growth of thermoacoustic oscillations were experimentally investigated in combination with linear/nonlinear flame transfer function (FTF) methodology in a model lean-premixed gas turbine combustor operated with CH 4 and air at atmospheric pressure. A fully premixed flame with 10kW thermal power and an equivalence ratio of 0.60 was chosen for detailed characterization of the nonlinear transient behaviors. Flame transfer functions were experimentally determined by simultaneous measurements of inlet velocity fluctuations and heat release rate oscillations using a constant temperature anemometer and OH */CH * chemiluminescence emissions, respectively. The phase-resolved variation of the local flame structure at a limit cycle was measured by planar laser-induced fluorescence of OH. Simultaneous measurements of inlet velocity, OH */CH * emission, and acoustic pressure were performed to investigate the temporal evolution of the system from a stable to a limit cycle operation. This measurement allows us to describe an unsteady instability triggering event in terms of several distinct stages: (i) initiation of a small perturbation, (ii) exponential amplification, (iii) saturation, (iv) nonlinear evolution of the perturbations towards a new unstable periodic state, (v) quasi-steady low-amplitude periodic oscillation, and (vi) fully-developed high-amplitude limit cycle oscillation. Phase-plane portraits of instantaneous inlet velocity and heat release rate clearly show the presence of two different attractors. Depending on its initial position in phase space at infinitesimally small amplitude, the system evolves towards either a high-amplitude oscillatory state or a low-amplitude oscillatory state. This transient phenomenon was analyzed using frequency- and amplitude-dependent damping mechanisms, and compared to subcritical and supercritical bifurcation theories. The results presented in this paper experimentally demonstrate the hypothesis proposed by Preetham et al. based on analytical and computational solutions of the nonlinear G-equation [J. Propul. Power 24 (2008) 1390-1402]. Good quantitative agreement was obtained between measurements and predictions in terms of the conditions for the onset of triggering and the amplitude of triggered combustion instabilities. © 2011 The Combustion Institute.
Conduction bottleneck in silicon nanochain single electron transistors operating at room temperature
Resumo:
Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.
Resumo:
Process simulation programs are valuable in generating accurate impurity profiles. Apart from accuracy the programs should also be efficient so as not to consume vast computer memory. This is especially true for devices and circuits of VLSI complexity. In this paper a remeshing scheme to make the finite element based solution of the non-linear diffusion equation more efficient is proposed. A remeshing scheme based on comparing the concentration values of adjacent node was then implemented and found to remove the problems of oscillation.
Resumo:
We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.
Resumo:
Detailed experimental investigations of the amplitude dependence of flame describing functions (FDF) were performed using a stratified swirl-stabilized combustor, in order to understand the combustion-acoustic interactions of CH4/air flames propagating into nonhomogeneous reactant stoichiometry. Phase-synchronized OH planar laser induced fluorescence (OH PLIF) measurements were used to investigate local reaction zone structures of forced flames. To determine the amplitude-and frequency-dependent forced flame response, simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. The measurements were made over a wide range of stratification ratios, including inner stream enrichment ( θ o>θ i) and outer stream enrichment ( θ o>θ i)) conditions, and compared to the baseline condition of spatially and temporally homogeneous cases ( θ o=θ i)). Results show that for the inlet conditions investigated, fuel stratification has a significant influence on local and global flame structures of unforced and forced flames. Under stratified conditions, length scales of local contours were found to be much larger than the homogeneous case due to high kinematic viscosities associated with high temperature. Stratification has a remarkable effect on flame-vortex interactions when the flame is subjected to high-amplitude acoustic forcing, leading to different evolution patterns of FDF (amplitude and disturbance convective time) in response to the amplitude of the imposed inlet velocity oscillation. The present experimental investigation reveals that intentional stratification has the potential to eliminate or suppress the occurrence of detrimental combustion instability problems in lean-premixed gas turbine combustion systems. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The effect of surface tension on global stability of co-flow jets and wakes at a moderate Reynolds number is studied. The linear temporal two-dimensional global modes are computed without approximations. All but one of the flow cases under study are globally stable without surface tension. It is found that surface tension can cause the flow to be globally unstable if the inlet shear (or equivalently, the inlet velocity ratio) is strong enough. For even stronger surface tension, the flow is re-stabilized. As long as there is no change of the most unstable mode, increasing surface tension decreases the oscillation frequency. Short waves appear in the high-shear region close to the nozzle, and their wavelength increases with increasing surface tension. The critical shear (the weakest inlet shear at which a global instability is found) gives rise to antisymmetric disturbances for the wakes and symmetric disturbances for the jets. However, at stronger shear, the opposite symmetry can be the most unstable one, in particular for wakes at high surface tension. The results show strong effects of surface tension that should be possible to reproduce experimentally as well as numerically.
Resumo:
The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.