972 resultados para Core Temperature
Resumo:
Successful application of the alkenone palaeothermometer, the UK'37 index, relies upon the assumption that fossil alkenone synthesisers responded to growth-temperature changes in a similar manner to the modern producers, chiefly the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. We compare coccolith and UK'37 data from ODP Site 1087 in the south-east Atlantic between 1500 and 500 ka, and show that evolutionary events and changes in species dominance within the coccolithophore populations had little impact on the UK'37 record. The relative abundances of the C37 and C38 alkenones also closely resembled those found in modern populations, and suggest a similar temperature sensitivity of UK'37 during the early and mid-Pleistocene to that found at present. These results support the application of the UK'37 index to reconstruct sea-surface temperatures (SSTs) throughout the Quaternary. The UK'37 record at ODP Site 1087 contains an SST signal that documents the emergence of the 100-kyr cycles that characterise the late Quaternary ice volume records. This is preceded by significant cooling at ODP Site 1087, marked by a negative shift in SSTs and a positive shift in the planktonic delta18O some 250-kyr earlier, at ca 1150-1000 ka. This results in a permanent fall in average SSTs of around 1.5 °C. The predicted increase in aridity onshore as a result of this cooling can be identified in a number of published records from southern Africa, and may have played a role in some important evolutionary events of the mid-Pleistocene.
Resumo:
The organic carbon isotopic record of the sapropels(S1 and S3-S10) and intercalated marl oozes has been determined in a 12-m piston core from the eastern Mediterranean. The d13C_organic values are systematically lighter (mean=-21.0±0.82 per mil) in all sapropels and heavier (mean=-18.8±1.07 per mil) in the marl oozes. These differences are not due to variable marine and terrestrial organic matter mixtures because all values are heavier than modern plankton in the Mediterranean, there is no relationship between the C_organic/N ratios and the isotopic values, and published information on the abundance and distribution of organic biomarkers shows that terrestrial material constitutes a minor fraction of the total organic matter. Temperature effects on isotope fractionation are also discounted because the change in d13C_organic values between glacial and interglacial horizons is in the opposite sense. Diagenesis, which can produce relatively small changes in the carbon isotopic composition of sedimentary organic matter under certain circumstances, is unlikely to have caused the observed differences because this mechanism would cause an enrichmet in 12C, implying that all values were even heavier originally, and there is no secular trend in the d13C_organic record. The observed differences in d13C_organic between the two lithologies are probably produced by changes in the isotopic composition and the concentration of dissolved CO2. First, freshwater flooding during the formation of the sapropels caused the isotopic composition of the dissolved inorganic carbon in the surface waters of the Mediterranean to become lighter because of the 13C deficiency in fresh waters. Hence photosynthesis would have produced isotopically lighter organic material. Second, changes in atmospheric pCO2 between glacial and interglacial periods, as shown by the Vostok ice core, caused marked changes in the concentration of free dissolved CO2 in the mixed layer; lower values during glacial maxima caused a smaller fractionation of the carbon isotopes by phytoplankton, whereas levels were less limiting during the interglacials. Concentrations of dissolved CO2 could also have been much higher during the deposition of the sapropels because of the supply of regenerated CO2 to the mixed layer by upwelling, and this could have further lightened the d13C_organic values in the sapropels themselves. Carbon isotope records may provide an alternative method for estimating atmospheric pCO2 levels over longer time periods than can be obtained from ice cores.
Resumo:
Theories explaining the origin of the abrupt, massive discharges of ice-rafted detritus (IRD) into the glacial North Atlantic (the Heinrich layers (HLs)) generally point to the Laurentide ice sheet as the sole source of these events, until it was found that the IRDs also originated from Icelandic and European ice sheets (Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005; Snoeckx et al., 1999, doi:10.1016/S0025-3227(98)00168-6; Grousset et al., 2000, doi:10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2). This apparent contradiction must be reconciled as it raises fundamental questions about the mechanism(s) of HL origin. We have analyzed two ~12 cm thick HLs in an ultrahigh-resolution mode (1-2 century intervals) in a mid-Atlantic ridge piston core. The d18O record (N. pachyderma left coiling) reveals strong excursions induced by the melting of the icebergs; these excursions are associated with a strong decrease in the amount of planktic foraminafersand with a 3°C cooling of the surface waters. Counts of coarse detrital grains reveal that IRD are deposited according to a typical sequence (1) volcanic glass, (2) quartz and feldspars, (3) detrital carbonate, that implies a chronology in the melting of the differentpan-Atlantic ice sheets. Sr and Nd isotopic composition confirm that in both Heinrich layers H1 and H2, "precursor" IRD came from first Europe/Iceland, followed then by Laurentide-derived IRD. An internal cyclicity can be identified: during H1 and H2, about four to six major, abrupt discharges occurred roughly on a century timescale. The d13C and d15N records reveal that dominant inputs of continent-derived organic matter are associated with IRD within the HLs, hiding the plankton productivity signal.
Resumo:
We present the first high-resolution alkenone-derived sea surface temperature (SST) reconstruction in the southeast Pacific (Ocean Drilling Program Site 1233) covering the major part of the last glacial period and the Holocene. The record shows a clear millennial-scale pattern that is very similar to climate fluctuations observed in Antarctic ice cores, suggesting that the Southern Hemisphere high-latitude climate changes extended into the midlatitudes, involving simultaneous changes in air temperatures over Antarctica, sea ice extent, extension of the Antarctic Circumpolar Current, and westerly atmospheric circulation. A comparison to other midlatitude surface ocean records suggests that this "Antarctic" millennial-scale pattern was probably a hemisphere-wide phenomenon. In addition, we performed SST gradient reconstructions over the complete latitudinal range of the Pacific Eastern Boundary Current System for different time intervals during the last 70 kyr. The main results suggest an equatorward displaced subtropical gyre circulation during marine isotope stages 2 and 4.
Resumo:
A lacustrine sediment core from Store Koldewey, northeast Greenland, was biogeochemically, biologically and sedimentologically investigated in order to reconstruct long- and short-term climatic and environmental variability. The chronology of the uppermost 189 cm of the record is based on ten 14C AMS age determinations of aquatic mosses. The record covers almost the entire Holocene and revealed changes on multidecadal to centennial scales. Dating of the oldest mosses shows that lacustrine biogenic productivity already began at around 11 cal. kyr BP. This age pre-dates the onset of biogenic productivity in other lakes on Store Koldewey by about 2 kyr. In spite of the early onset of biogenic production organic matter accumulation remained low and minerogenic sedimentation dominated. At about 9.5 cal. kyr BP moss, sulphur, organic carbon and biogenic silica content started to increase, indicating that the environment stabilized and the biogenic production in the lake adjusted to more preferable conditions. Subsequently, the biogenic productivity experienced repeated changes and varied both on long- and short-term scales. The long-term trend shows a maximum during the early Holocene thus responding to increased temperatures during the Holocene Thermal Maximum. Superimposed on the long-term trend, biogenic productivity also experienced repeated short-term fluctuations that match partly the NGRIP temperatures. The most pronounced decrease of biogenic productivity occurred at around 8.2 cal. kyr BP. Perennial lake ice coverage resulting from low temperatures is supposed to have caused decreased lacustrine biogenic productivity. From the middle Holocene to the present repeated decreases of productivity occurred that could be related to periods with severe sea-ice conditions of the East Greenland Current. Besides the dependence on air temperature it therefore demonstrates the sensitivity of lacustrine biogenic productivity in coastal high arctic areas to short-term cold spells that are mediated by the currents emanating from the Arctic Ocean. However, the data also emphasize the difficulties associated with the interpretation of lacustrine records.
Resumo:
The Dansgaard-Oeschger oscillations and Heinrich events described in North Atlantic sediments and Greenland ice are expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. Given the strength of this teleconnection, we seek to reconstruct its range of environmental impacts. We present geochemical and sedimentological data from core SO130-289KL from the Indus submarine slope spanning the last ~ 80 kyr. Elemental and grain size analyses consistently indicate that interstadials are characterized by an increased contribution of fluvial suspension from the Indus River. In contrast, stadials are characterized by an increased contribution of aeolian dust from the Arabian Peninsula. Decadal-scale shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related proxies. Heinrich events stand out as especially dry and dusty events, indicating a dramatically weakened Indian summer monsoon, potentially increased winter monsoon circulation, and increased aridity on the Arabian Peninsula. This finding is consistent with other paleoclimate evidence for continental aridity in the northern tropics during these events. Our results strengthen the evidence that circum-North Atlantic temperature variations translate to hydrological shifts in the tropics, with major impacts on regional environmental conditions such as rainfall, river discharge, aeolian dust transport, and ocean margin anoxia.
Resumo:
Stable isotopic measurements of G. sacculifer and C. wuellerstorfi in a core from the western equatorial Atlantic imply that there are parallel, suborbital oscillations in surface water hydrography and deep water circulation occurring during oxygen isotope stages 2 and 3. Low values of G. sacculifer delta18O accompany high values of C. wuellerstorfi delta13C, linking warmer sea surface temperatures (SSTs) in the tropics with increased production of lower North Atlantic Deep Water (NADW). The amplitude of the delta18O oscillations is 0.6 per mil (or 2°-3°C), which is superimposed on a glacial/interglacial amplitude of about 2.1per mil. Using the G. sacculifer delta18O data, we calculate that surface waters were colder during stage 2 than calculated by CLIMAP [1976, 1981]. The longer-period (>2 kyr) oscillations in air temperature recorded in the Greenland and Antarctic ice cores appear to correlate with oscillations in sea surface temperature in the equatorial Atlantic. The magnitude of these oscillations in tropical SST is too large to have resulted from changes in meridional heat transport caused by the global conveyor alone. The apparent synchroneity of equatorial SST and polar air temperature changes, as well as the amplitude of the SST changes at the equator, are consistent with the climate effects expected from changes in the atmosphere's greenhouse gas content (H2Ovapor, CO2, and CH4).
Resumo:
Corresponding millennial-scale climate changes have been reported from the North Atlantic region and from east Asia for the last glacial period on independent timescales only. To assess their degree of synchrony we suggest interpreting Greenland ice core dust parameters as proxies for the east Asian monsoon systems. This allows comparing North Atlantic and east Asian climate on the same timescale in high resolution ice core data without relative dating uncertainties. We find that during Dansgaard-Oeschger events North Atlantic region temperature and east Asian storminess were tightly coupled and changed synchronously within 5-10 years with no systematic lead or lag, thus providing instantaneous climatic feedback. The tight link between North Atlantic and east Asian glacial climate could have amplified changes in the northern polar cell to larger scales. We further find evidence for an early onset of a Younger Dryas-like event in continental Asia, which gives evidence for heterogeneous climate change within east Asia during the last deglaciation.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.