929 resultados para Constitutional Injunctions (ADI nº.4.917, ADI nº. 4.916, ADI nº. 4.492 and ADI nº. 4.920)
Resumo:
Several orthopoxviruses (OPV) and Borna disease virus (BDV) are enveloped, zoonotic viruses with a wide geographical distribution. OPV antibodies cross-react, and former smallpox vaccination has therefore protected human populations from another OPV infection, rodent-borne cowpox virus (CPXV). Cowpox in humans and cats usually manifests as a mild, self-limiting dermatitis and constitutional symptoms, but it can be severe and even life-threatening in the immunocompromised. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep known in central Europe for centuries. Nowadays the virus or its close relative infects humans and also several other species in central Europe and elsewhere, but the existence of human Borna disease with its suspected neuropsychiatric symptoms is controversial. The epidemiology of BDV is largely unknown, and the present situation is even more intriguing following the recent detection of several-million-year-old, endogenized BDV genes in primate and various other vertebrate genomes. The aims of this study were to elucidate the importance of CPXV and BDV in Finland and in possible host species, and particularly to 1) establish relevant methods for the detection of CPXV and other OPVs as well as BDV in Finland, 2) determine whether CPXV and BDV exist in Finland, 3) discover how common OPV immunity is in different age groups in Finland, 4) characterize possible disease cases and clarify their epidemiological context, 5) establish the hosts and possible reservoir species of these viruses and their geographical distribution in wild rodents, and 6) elucidate the infection kinetics of BDV in the bank vole. An indirect immunofluorescence assay and avidity measurement were established for the detection, timing and verification of OPV or BDV antibodies in thousands of blood samples from humans, horses, ruminants, lynxes, gallinaceous birds, dogs, cats and rodents. The mostly vaccine-derived OPV seroprevalence was found to decrease gradually according to the year of birth of the sampled human subjects from 100% to 10% in those born after 1977. On the other hand, OPV antibodies indicating natural contact with CPXV or other OPVs were commonly found in domestic and wild animals: the horse, cow, lynx, dog, cat and, with a prevalence occasionally even as high as 92%, in wild rodents, including some previously undetected species and new regions. Antibodies to BDV were detected in humans, horses, a dog, cats, and for the first time in wild rodents, such as bank voles (Myodes glareolus). Because of the controversy within the human Borna disease field, extra verification methods were established for BDV antibody findings: recombinant nucleocapsid and phosphoproteins were produced in Escherichia coli and in a baculovirus system, and peptide arrays were additionally applied. With these verification assays, Finnish human, equine, feline and rodent BDV infections were confirmed. Taken together, wide host spectra were evident for both OPV and BDV infections based on the antibody findings, and OPV infections were found to be geographically broadly distributed. PCR amplification methods were utilised for hundreds of blood and tissue samples. The methods included conventional, nested and real-time PCRs with or without the reverse transcription step and detecting four or two genes of OPVs and BDV, respectively. OPV DNA could be amplified from two human patients and three bank voles, whereas no BDV RNA was detected in naturally infected individuals. Based on the phylogenetic analyses, the Finnish OPV sequences were closely related although not identical to a Russian CPXV isolate, and clearly different from other CPXV strains. Moreover, the Finnish sequences only equalled each other, but the short amplicons obtained from German rodents were identical to monkeypox virus, in addition to German CPXV variants. This reflects the close relationship of all OPVs. In summary, RNA of the Finnish BDV variant could not be detected with the available PCR methods, but OPV DNA infrequently could. The OPV species infecting the patients of this study was proven to be CPXV, which is most probably also responsible for the rodent infections. Multiple cell lines and some newborn rodents were utilised in the isolation of CPXV and BDV from patient and wildlife samples. CPXV could be isolated from a child with severe, generalised cowpox. BDV isolation attempts from rodents were unsuccessful in this study. However, in parallel studies, a transient BDV infection of cells inoculated with equine brain material was detected, and BDV antigens discovered in archival animal brains using established immunohistology. Thus, based on several independent methods, both CPXV and BDV (or a closely related agent) were shown to be present in Finland. Bank voles could be productively infected with BDV. This experimental infection did not result in notable pathological findings or symptoms, despite the intense spread of the virus in the central and peripheral nervous system. Infected voles commonly excreted the virus in urine and faeces, which emphasises their possible role as a BDV reservoir. Moreover, BDV RNA was regularly reverse transcribed into DNA in bank voles, which was detected by amplifying DNA by PCR without reverse transcription, and verified with nuclease treatments. This finding indicates that BDV genes could be endogenized during an acute infection. Although further transmission studies are needed, this experimental infection demonstrated that the bank vole can function as a potential BDV reservoir. In summary, multiple methods were established and applied in large panels to detect two zoonoses novel to Finland: cowpox virus and Borna disease virus. Moreover, new information was obtained on their geographical distribution, host spectrum, epidemiology and infection kinetics.
Resumo:
Contrary to that of phenyl derivative 1 the radical 4 adds to radicophiles in an inter- followed by intra-molecular radical Michael addition (radical annulation), furnishing a novel route to chiral isotwistanes 5.
Resumo:
The structure of [Cu4L2(bipy)4(µ3-OH)2][ClO4]4 containing a Vitamin B6 ligand, pyridoxine (5-hydroxy-6-methylpyridine-3,4-dimethanol, HL), and 2,2′-bipyridine (bipy) has been determined by single-crystal X-ray analysis. This is the first report on a copper(II) complex having a ‘stepped-cubane’ structure. The compound crystallizes in the triclinic space group P[1 with combining macron](Z= 1) with a= 11.015(3), b= 11.902(1), c= 13.142(2)Å, α= 105.07(1), β= 102.22(1) and γ= 99.12(1)°; R= 0.054). The co-ordination geometry around each copper is trigonally distorted square pyramidal. Two of the basal sites are occupied by bipyridyl nitrogens in a bidentate fashion. The remaining basal positions for Cu(1) are filled by a phenolic oxygen and a 4-hydroxymethyl oxygen of the L moiety, whereas for Cu(2) they are occupied by two µ3-OH oxygens. The axial sites are occupied by a µ3-OH oxygen and the 4-hydroxymethyl oxygen of the same pyridoxine for Cu(1) and Cu(2), respectively. Both the bridging nature of the 4-hydroxymethyl oxygen of the L moiety and the unsymmetrical bridging nature of the µ3-OH groups with axial–equatorial bridging are novel features. The structure is discussed in relation to stepped-cubane structures reported in the literature. A comparative study is also made with µ3-hydroxo-bridged copper(II) complexes. Both the plasticity effect of CuII and the stacking interactions between the various rings appear to be important in stabilizing this unusual structure.
Resumo:
A Claisen rearrangement and RCM reaction based sequence has been developed for total synthesis of the antifungal sesquiterpenes enokipodins A-D and cuparene-1,4-diol starting from 2,5-dimethoxy-4-methylhydroquinone.
Resumo:
The X-ray analysis of the tetranuclear copper(II) complex formed from pyridoxic acid and 2,2′-dipyridylamine reveals a novel metal binding mode of pyridoxic acid as a multibridged tetradentate dianion. Here the pyridoxic acid moiety uses all possible sites except the pyridine nitrogen for metal coordination.
Resumo:
We report experimental studies which confirm our prediction, namely that the ordered structure of poly(hydroxypro1ine) in solution corresponds to a left-handed helical structure with intrachain hydrogen bonds. The CD studies show that the poly(hydroxypro1ine) molecule has essentially the same conformation in aqueous solution and in the film obtained subsequently by evaporation. X-ray diffraction patterns of the sample in this form (B form) have been recorded at different relative humidities. The patterns recorded at relative humidities over 66% can be interpreted in terms of a helical structure with intrachain hydrogen bonds. These results lead us to conclude that the ordered conformation of poly(hydroxypro1ine) in solution is form B and not form A. This offers a simple explanation for the greater stability of the poly(hydroxypro1ine) helix in solution as compared to the poly(pro1ine) form I1 helix and also for the absence of mutarotation for poly(hydroxypro1ine).
Resumo:
Model building studies on poly(hydroxypro1ine) indicate that in addition to the well-known helical structure of form A, a left-handed helical structure with trans peptide units and with h = 2.86 A and n = 2.67 (i.e., 8 residues in 3 turns) is also possible. In this structure which is shown to be in agreement with X-ray data of the form B in the next paper, the y-hydroxyl group of an (i + 1)th Hyp residue is hydrogen bonded to the carbonyl oxygen of an (i - 1)th residue. The possibility of a structure with cis peptide units is ruled out. It is shown that both forms A and B are equally favorable from considerations of intramolecular energies. Since form B is further stabilized by intrachain hydrogen bonds, we believe that this is likely to be the ordered conformation for poly(hydroxypro1ine) in water.
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
DDQ oxidation of the spiroalcohol 7a gives exclusively a compound to which the 13a-methyl-13aH-7a, 15-methano-15H-dinaphtho[2,1-b:2',1'-e][1,4]-dioxepin structure 8a has been assigned on the basis of two-dimensional homonuclear (H-1-H-1) and heteronuclear (H-1-C-13; FUCOUP) correlation spectroscopy experiments. Similar oxidation of spiroalcohols 7b-h gives the dioxepin derivatives 8b-h.