989 resultados para Congnitive neuroscience


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hippocrates was the first to suggest the healing power of food; however, it was not until the medieval ages that food was considered a tool to modify temperament and mood, although scientific methods as we know them today were not in use at the time. Modern scientific methods in neuroscience began to emerge much later, leading investigators to examine the role of diet in health, including mental well-being, with greater precision. This review shows how short- and long-term forced dietary interventions bring about changes in brain structure, chemistry, and physiology, leading to altered animal behavior. Examples will be presented to show how diets alter brain chemistry, behavior, and the action of neuroactive drugs. Most humans and most animal species examined in a controlled setting exhibit a fairly reproducible pattern of what and how they eat. Recent data suggest that these patterns may be under the neurochemical and hormonal control of the organisms themselves. Other data show that in many instances food may be used unconsciously to regulate mood by seemingly normal subjects as well as those undergoing drug withdrawal or experiencing seasonal affective disorders and obesity-related social withdrawal. We will discuss specific examples that illustrate that manipulation of dietary preference is actually an attempt to correct neurochemical make-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zebrafish (Danio rerio) has been used as a model in neuroscience but knowledge about its behavior is limited. The aim of this study was to determine the preference of this fish species for a dark or light environment. Initially we used a place preference test and in a second experiment we applied an exit latency test. A two-chamber aquarium was used for the preference test. The aquarium consisted of a black chamber and a white chamber. In the first experiment the animal was placed in the aquarium and the time spent in the two compartments was recorded for 10 min. More time was spent in the black compartment (Wilcoxon matched-pairs signed-rank test, T = 7, N1 = N2 = 18, P = 0.0001). In the second experiment the animal was placed in the black or white compartment and the time it took to go from the initial compartment to the opposite one was recorded. The test lasted a maximum of 10 min. The results showed that the animal spent more time to go from the black to the white compartment (Mann-Whitney rank sum test, T = 48, N1 = 9, N2 = 8, P<0.0230). These data suggest that this fish species has a natural preference for a dark environment and this characteristic can be very useful for the development of new behavioral paradigms for fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium sponsored by the Brazilian Society of Neuroscience and Behavior (SBNeC). Invited researchers from the European Union, North America and Brazil discussed two issues on anxiety, namely whether panic is a very intense anxiety or something else, and what aspects of clinical anxiety are reproduced by animal models. Concerning the first issue, most participants agreed that generalized anxiety and panic disorder are different on the basis of clinical manifestations, drug response and animal models. Also, underlying brain structures, neurotransmitter modulation and hormonal changes seem to involve important differences. It is also common knowledge that existing animal models generate different types of fear/anxiety. A challenge for future research is to establish a good correlation between animal models and nosological classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which active researchers were invited by the Brazilian Society of Neuroscience and Behavior (SBNeC) to discuss the advances of the last decade in the neurobiology of emotion. Four basic questions were debated: 1) What are the most critical issues/questions in the neurobiology of emotion? 2) What do we know for certain about brain processes involved in emotion and what is controversial? 3) What kinds of research are needed to resolve these controversial issues? 4) What is the relationship between learning, memory and emotion? The focus was on the existence of different neural systems for different emotions and the nature of the neural coding for the emotional states. Is emotion the result of the interaction of different brain regions such as the amygdala, the nucleus accumbens, or the periaqueductal gray matter or is it an emergent property of the whole brain neural network? The relationship between unlearned and learned emotions was also discussed. Are the circuits of the former the underpinnings of the latter? It was pointed out that much of what we know about emotions refers to aversively motivated behaviors, like fear and anxiety. Appetitive emotions should attract much interest in the future. The learning and memory relationship with emotions was also discussed in terms of conditioned and unconditioned stimuli, innate and learned fear, contextual cues inducing emotional states, implicit memory and the property of using this term for animal memories. In a general way it could be said that learning modifies the neural circuits through which emotional responses are expressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present article is the adapted version of an electronic symposium organized by the Brazilian Society of Neuroscience and Behavior (SBNeC) which took place on June 14, 2000. The text is divided into three sections: I. The main issues, II. Chronodrugs, and III. Methods. The first section is dedicated to the perspectives of chronobiology for the next decade, with opinions about the trends of future research being emitted and discussed. The second section deals mostly with drugs acting or potentially acting on the organism's timing systems. In the third section there are considerations about relevant methodological issues concerning data analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium held on November 28, 2000 in which active researchers were invited by the Brazilian Society of Neuroscience and Behavior (SBNeC) to discuss the advances of the last decade in the peptide field with particular focus on central actions of prolactin and cholecystokinin. The comments in this symposium reflect the diversity of prolactin and cholecystokinin research and demonstrate how the field has matured. Since both peptides play a role in reproductive behaviors, particularly mother-infant interactions, this was the starting point of the discussion. Recent findings on the role of the receptor subtypes as well as interaction with other peptides in this context were also discussed. Another issue discussed was the possible role of these peptides in dopamine-mediated rewarding systems. Both prolactin and cholecystokinin are involved in mechanisms controlling food intake and somatic pain thresholds. The role of peripheral inputs through vagal afferents modulating behavior was stressed. The advent of knockout animals as potential generators of new knowledge in this field was also addressed. Finally, interactions with other neuropeptides and investigation of the role of these peptides in other fields such as immunology were mentioned. Knowledge about the central functions of prolactin and cholecystokinin has shown important advances. The role of these peptides in neurological and psychiatric syndromes such as anorexia, drug abuse and physiological disturbances that lead to a compromised maternal behavior seems relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC). Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical) properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium held on February 5, 2001 by the Brazilian Society of Neuroscience and Behavior (SBNeC) during which eight specialists involved in clinical and experimental research on sleep and dreaming exposed their personal experience and theoretical points of view concerning these highly polemic subjects. Unlike most other bodily functions, sleep and dreaming cannot, so far, be defined in terms of definitive functions that play an ascribable role in maintaining the organism as a whole. Such difficulties appear quite clearly all along the discussions. In this symposium, concepts on sleep function range from a protective behavior to an essential function for maturation of the nervous system. Kleitman's hypothesis [Journal of Nervous and Mental Disease (1974), 159: 293-294] was discussed, according to which the basal state is not the wakeful state but sleep, from which we awake to eat, to protect ourselves, to procreate, etc. Dreams, on the other hand, were widely discussed, being considered either as an important step in consolidation of learning or simply the conscious identification of functional patterns derived from the configuration of released or revoked memorized information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular functions of the non-cell cycle-related Cyclin-dependent kinase 5 (Cdk5) have been of primary interest within the neuroscience field, but novel undertakings are constantly emerging for the kinase in tissue homeostasis, as well as in diseases such as diabetes and cancer. Although Cdk5 activation is predominantly regulated by specific non-cyclin activator protein binding, additional mechanisms have proved to orchestrate Cdk5 signaling in cells. For example, the interaction between the intermediate filament protein nestin and Cdk5 has been proposed to determine cellular fate during neuronal apoptosis through nestin-dependent adjustment of the sensitive balance and turnover of Cdk5 activators. While nestin constitutes a crucial regulatory scaffold for appropriate Cdk5 activation in apoptosis, Cdk5 itself phosphorylates nestin with the consequence of filament reorganization in both neuronal progenitors and differentiating muscle cells. Interestingly, the two proteins are often found coexpressed in various tissues and cell types, proposing that nestin-mediated scaffolding of Cdk5 and its activators may be applicable to other tissue systems as well. In the literature, the molecular functions of nestin have remained in the shade, as it is mostly exploited as a marker protein for progenitor cells. In light of these studies, the aim of this thesis was to assess the importance of the nestin scaffold in regulation of Cdk5 actions in cell fate decisions. This thesis can be subdivided into two major projects: one that studied the nature of the Cdk5-nestin interplay in muscle, and one that assessed their role in prostate cancer. During differentiation of a myoblast cell line, the filament formation properties of nestin was found to be crucial in directing Cdk5 activity, with direct consequences on the process of differentiation. Also the genetic knockout of nestin was found to influence Cdk5 activity, although differentiation per se was not affected. Instead, the genetic ablation of nestin had broad consequences on muscle homeostasis and regeneration. While the nestin-mediated regulation of Cdk5 in muscle was found to act in multiple ways, the connection remained more elusive in cancer models. Cdk5 was, however, established as a significant determinant of prostate cancer proliferation; a behavior uncharacteristic for this differentiation-associated kinase. Through complex and simultaneous regulation of two major prostate cancer pathways, Cdk5 was placed upstream of both Akt kinase and the androgen receptor. Its action on proliferation was nonetheless mainly exerted through the Akt signaling pathway in various cancer models. In summary, this thesis contributed to the knowledge of Cdk5 regulation and functions in two atypical settings; proliferation (in a cancer framework) and muscle differentiation, which is a poorly understood model system in the Cdk5 field. This balance between proliferation and differentiation implemented by Cdk5 is ultimately regulated (where present) by the dynamics of the cytoskeletal nestin scaffold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing consistent evidence indicates that hypofunction of N-methyl-D-aspartate (NMDA) transmission plays a pivotal role in the neuropathophysiology of schizophrenia. Hence, drugs which modulate NMDA neurotransmission are promising approaches to the treatment of schizophrenia. The aim of this article is to review clinical trials with novel compounds acting on the NMDA receptor (NMDA-R). This review also includes a discussion and translation of neuroscience into schizophrenia therapeutics. Although the precise mechanism of action of minocycline in the brain remains unclear, there is evidence that it blocks the neurotoxicity of NMDA antagonists and may exert a differential effect on NMDA signaling pathways. We, therefore, hypothesize that the effects of minocycline on the brain may be partially modulated by the NMDA-R or related mechanisms. Thus, we have included a review of minocycline neuroscience. The search was performed in the PubMed, Web of Science, SciELO, and Lilacs databases. The results of glycine and D-cycloserine trials were conflicting regarding effectiveness on the negative and cognitive symptoms of schizophrenia. D-serine and D-alanine showed a potential effect on negative symptoms and on cognitive deficits. Sarcosine data indicated a considerable improvement as adjunctive therapy. Finally, minocycline add-on treatment appears to be effective on a broad range of psychopathology in patients with schizophrenia. The differential modulation of NMDA-R neurosystems, in particular synaptic versus extrasynaptic NMDA-R activation and specific subtypes of NMDA-R, may be the key mediators of neurogenesis and neuroprotection. Thus, psychotropics modulating NMDA-R neurotransmission may represent future monotherapy or add-on treatment strategies in the treatment of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present review, the phenomenon of ultrasonic vocalization in rats will be outlined, including the three classes of vocalizations, namely 40-kHz calls of pups, and 22- and 50-kHz calls of juvenile and adult rats, their general relevance to behavioral neuroscience, and their special relevance to research on anxiety, fear, and defense mechanisms. Here, the emphasis will be placed on 40- and 22-kHz calls, since they are typical for various situations with aversive properties. Among other topics, we will discuss whether such behavioral signals can index a certain affective state, and how these signals can be used in social neuroscience, especially with respect to communication. Furthermore, we will address the phenomenon of inter-individual variability in ultrasonic calling and what we currently know about the mechanisms, which may determine such variability. Finally, we will address the current knowledge on the neural and pharmacological mechanisms underlying 22-kHz ultrasonic vocalization, which show a substantial overlap with mechanisms known from other research on fear and anxiety, such as those involving the periaqueductal gray or the amygdala.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid inteliigence has been defined as an innate ability to reason which is measured commonly by the Raven's Progressive Matrices (RPM). Individual differences in fluid intelligence are currently explained by the Cascade model (Fry & Hale, 1996) and the Controlled Attention hypothesis (Engle, Kane, & Tuholski, 1999; Kane & Engle, 2002). The first theory is based on a complex relation among age, speed, and working memory which is described as a Cascade. The alternative to this theory, the Controlled Attention hypothesis, is based on the proposition that it is the executive attention component of working memory that explains performance on fluid intelligence tests. The first goal of this study was to examine whether the Cascade model is consistent within the visuo-spatial and verbal-numerical modalities. The second goal was to examine whether the executive attention component ofworking memory accounts for the relation between working memory and fluid intelligence. Two hundred and six undergraduate students between the ages of 18 and 28 completed a battery of cognitive tests selected to measure processing speed, working memory, and controlled attention which were selected from two cognitive modalities, verbalnumerical and visuo-spatial. These were used to predict performance on two standard measures of fluid intelligence: the Raven's Progressive Matrices (RPM) and the Shipley Institute of Living Scales (SILS) subtests. Multiple regression and Structural Equation Modeling (SEM) were used to test the Cascade model and to determine the independent and joint effects of controlled attention and working memory on general fluid intelligence. Among the processing speed measures only spatial scan was related to the RPM. No other significant relations were observed between processing speed and fluid intelligence. As 1 a construct, working memory was related to the fluid intelligence tests. Consistent with the predictions for the RPM there was support for the Cascade model within the visuo-spatial modality but not within the verbal-numerical modality. There was no support for the Cascade model with respect to the SILS tests. SEM revealed that there was a direct path between controlled attention and RPM and between working memory and RPM. However, a significant path between set switching and RPM explained the relation between controlled attention and RPM. The prediction that controlled attention mediated the relation between working memory and RPM was therefore not supported. The findings support the view that the Cascade model may not adequately explain individual differences in fluid intelligence and this may be due to the differential relations observed between working memory and fluid intelligence across different modalities. The findings also show that working memory is not a domain-general construct and as a result its relation with fluid intelligence may be dependent on the nature of the working memory modality.