877 resultados para Congenital Abnormalities.
Resumo:
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.
Resumo:
Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.
Resumo:
Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle-controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.
Resumo:
The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The yeast Bud31 protein, a Prp19 complex (NTC) member, aids spliceosome assembly and thus promotes efficient pre-mRNA splicing. The bud31 null cells show mild budding abnormalities at optimal growth temperatures and, at higher temperatures, have growth defects with aberrant budding. Here we have assessed cell cycle transitions which require Bud31. We find Bud31 facilitates passage through G1-S regulatory point (Start) but is not needed for G2-M transition or for exit from mitosis. To co-relate Bud31 functions in cell division with splicing, we studied the splicing status of transcripts that encode proteins involved in budding. We find Bud31 promotes efficient splicing of only some of these pre-mRNAs, for example, ARP2 and SRC1. Wild type cells have a long and a short isoform of SRC1 mRNA and protein, out of which the shorter mRNA splice variant is predominant. bud31 Delta cells show inefficient SRC1 splicing and entirely lack the shorter SRC1 spliced mRNA isoform. Yeast PRP17, another NTC sub-complex member, is also required for G1-S and G2-M cell cycle transitions. We examined genetic interactions between BUD31 and PRP17. While both factors were needed for efficient cell cycle dependent gene expression, our data indicate that distinct pre-mRNAs depend on each of these non-essential splicing factors.
Resumo:
In this paper, the design and development of a novel low-cost, non-invasive type sensor suitable for human breath sensing is reported. It can be used to detect respiratory disorders like bronchial asthma by analyzing the recorded breathing pattern. Though there are devices like spirometer to diagnose asthma, they are very inconvenient for patient's use because patients are made to exhale air through mouth forcefully. Presently developed sensor will overcome this limitation and is helpful in the diagnosis of respiratory related abnormalities. Polyvinylidene fluoride (PVDF) film in cantilever configuration is used as a sensing element to form the breath sensor. Two identical sensors are mounted on a spectacle frame, such that the tidal flow of inhaled and exhale air will impinge on sensor, for sensing the breathing patterns. These patterns are recorded, filtered, analyzed and displayed using CRO. Further the sensor is calibrated using a U-tube water manometer. The added advantage of piezoelectric type sensing element is that it is self powered without the need of any external power source.
Resumo:
Background: We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the beta gamma-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in beta gamma-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods: Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results: Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion: When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display `native state aggregation', leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy ``distort motif, lose central vision''.
Resumo:
Background & objectives: Pre-clinical toxicology evaluation of biotechnology products is a challenge to the toxicologist. The present investigation is an attempt to evaluate the safety profile of the first indigenously developed recombinant DNA anti-rabies vaccine DRV (100 mu g)] and combination rabies vaccine CRV (100 mu g DRV and 1.25 IU of cell culture-derived inactivated rabies virus vaccine)], which are intended for clinical use by intramuscular route in Rhesus monkeys. Methods: As per the regulatory requirements, the study was designed for acute (single dose - 14 days), sub-chronic (repeat dose - 28 days) and chronic (intended clinical dose - 120 days) toxicity tests using three dose levels, viz. therapeutic, average (2x therapeutic dose) and highest dose (10 x therapeutic dose) exposure in monkeys. The selection of the model i.e. monkey was based on affinity and rapid higher antibody response during the efficacy studies. An attempt was made to evaluate all parameters which included physical, physiological, clinical, haematological and histopathological profiles of all target organs, as well as Tiers I, II, III immunotoxicity parameters. Results: In acute toxicity there was no mortality in spite of exposing the monkeys to 10XDRV. In sub chronic and chronic toxicity studies there were no abnormalities in physical, physiological, neurological, clinical parameters, after administration of test compound in intended and 10 times of clinical dosage schedule of DRV and CRV under the experimental conditions. Clinical chemistry, haematology, organ weights and histopathology studies were essentially unremarkable except the presence of residual DNA in femtogram level at site of injection in animal which received 10X DRV in chronic toxicity study. No Observational Adverse Effects Level (NOAEL) of DRV is 1000 ug/dose (10 times of therapeutic dose) if administered on 0, 4, 7, 14, 28th day. Interpretation & conclusions: The information generated by this study not only draws attention to the need for national and international regulatory agencies in formulating guidelines for pre-clinical safety evaluation of biotech products but also facilitates the development of biopharmaceuticals as safe potential therapeutic agents.
Resumo:
The tunable optical properties of the bulk structure of carbon nanotubes (CNT) were recently revealed as a perfect black body material, optically reflective mirror and solar absorber. The present study demonstrates an enhanced optical reflectance of up to similar to 15% over a broad wavelength range in the near infrared region followed by a mechanical modification of the surface of a bulk CNT structure, which can be accounted for due to the grating-like surface abnormalities. In response to the specific arrangement of the so-formed bent tips of the CNT, a selective reflectance is achieved and results in reflecting only a dominant component of the polarized ight, which has not been realized so far. Modulation of this selective-optical reflectance can be achieved by ontrolling the degree of tip bending of the nanotubes, thus opening up avenues for the construction of novel dynamic light polarizers and absorbers.
Resumo:
Magnetic Resonance Spectroscopy (MRS) offers a unique opportunity to measure brain metabolites in-vivo, and in doing so enables one to understand the brain function and cellular processes implicated in the pathophysiology of psychiatric disorders. MRS, in addition to being non-invasive, is devoid of radioactive tracers and ionizing radiation, a distinct advantage over other imaging modalities like positron emission tomography and single photon emission computed tomography. With advances in MRS technique it is now possible to quantify concentrations of relevant compounds like neurotransmitters, neuronal viability markers and pharmacological compounds. Majority of the MRS studies have examined the neurometabolites in schizophrenia, a common and debilitating psychiatric disorder. Abnormalities in N Acetyl aspartate and Glutamate are consistently reported while the reports regarding the myoinsoitol and choline are inconsistent. These abnormalities are not changed across the illness stages and despite treatment. However, multiple technical challenges have limited the widespread use of MRS in psychiatric disorders. Guidelines for uniform acquisition and preprocessing are need of the hour, which. would increase the replicability and validity of MRS measures in psychiatry. Finally long term, prospective, longitudinal studies are required in different psychiatric disorders for potential clinical applications.
Resumo:
Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Extensive and indiscriminate use of synthetic compounds and natural compounds obtained from plant sources have resulted in serious threats to the aquatic ecosystem and human health. Aqueous extract of the root of the plant, Milletia pachycarpa Benth, is currently used for killing fish in the state of Manipur, India. Moreover, this plant is also used as traditional medicine in this region. Although it is widely used in traditional medicine, there is limited information available regarding the adverse effects and mechanism underlying its toxicity. This study examined the effects of exposure to aqueous extract of M. pachycarpa (AEMP) on early embryonic development of zebrafish embryos and mechanisms underlying toxicity. Zebrafish embryos treated with different concentrations of the AEMP produced embryonic lethality and developmental defects. The 96-hr-LC50 of AEMP was found to be 4.276 mu g/mL. Further, multiple developmental abnormalities such as pericardial edema, yolk sac edema, spinal curvature, swim bladder deflation, decreased heart rate, and delayed hatching were also observed in a dose-dependent manner. Zebrafish embryo showing moderate-to-severe developmental defects following AEMP exposure cannot swim properly. Further, this study examined oxidative stress and apoptosis in embryos exposed to AEMP. Enhanced production of ROS and apoptosis was found in brain, trunk, and tail of zebrafish embryos treated with AEMP. Data suggest that oxidative stress and apoptosis are associated with AEMP-induced embryonic lethality and developmental toxicity in zebrafish embryos.
Resumo:
Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. Biological significance: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock -in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock -in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene exptessions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh-Qm (Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To examine the role of androgens on birth weight in genetic models of altered androgen signalling. SETTING: Cambridge Disorders of Sex Development (DSD) database and the Swedish national screening programme for congenital adrenal hyperplasia (CAH). PATIENTS: (1) 29 girls with XY karyotype and mutation positive complete androgen insensitivity syndrome (CAIS); (2) 43 girls and 30 boys with genotype confirmed CAH. MAIN OUTCOME MEASURES: Birth weight, birth weight-for-gestational-age (birth weight standard deviation score (SDS)) calculated by comparison with national references. RESULTS: Mean birth weight SDS in CAIS XY infants was higher than the reference for girls (mean, 95% CI: 0.4, 0.1 to 0.7; p=0.02) and was similar to the national reference for boys (0.1, -0.2 to 0.4). Birth weight SDS in CAH girls was similar to the national reference for girls (0.0, -0.2 to 0.2) and did not vary by severity of gene mutation. Birth weight SDS in CAH boys was also similar to the national reference for boys (0.2, -0.2 to 0.6). CONCLUSION: CAIS XY infants have a birth weight distribution similar to normal male infants and birth weight is not increased in infants with CAH. Alterations in androgen signalling have little impact on birth weight. Sex dimorphism in birth size is unrelated to prenatal androgen exposure.