934 resultados para Confocal Laser Scanning Microscopy
Resumo:
Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.
Resumo:
We investigated the phenotype of cells involved in leukostasis in the early stages of streptozotocin-induced diabetes in mice by direct observation and by adoptive transfer of calcein-AM-labeled bone marrow-derived leukocytes from syngeneic mice. Retinal whole mounts, confocal microscopy, and flow cytometry ex vivo and scanning laser ophthalmoscopy in vivo were used. Leukostasis in vivo and ex vivo in retinal capillaries was increased after 2 weeks of diabetes (Hb A(1c), 14.2 ± 1.2) when either donor or recipient mice were diabetic. Maximum leukostasis occurred when both donor and recipient were diabetic. CD11b(+), but not Gr1(+), cells were preferentially entrapped in retinal vessels (fivefold increase compared with nondiabetic mice). In diabetic mice, circulating CD11b(+) cells expressed high levels of CCR5 (P = 0.04), whereas spleen (P = 0.0001) and retinal (P = 0.05) cells expressed increased levels of the fractalkine chemokine receptor. Rosuvastatin treatment prevented leukostasis when both recipient and donor were treated but not when donor mice only were treated. This effect was blocked by treatment with mevalonate. We conclude that leukostasis in early diabetic retinopathy involves activated CCR5(+)CD11b(+) myeloid cells (presumed monocytes). However, leukostasis also requires diabetes-induced changes in the endothelium, because statin therapy prevented leukostasis only when recipient mice were treated. The up-regulation of the HMG-CoA reductase pathway in the endothelium is the major metabolic dysregulation promoting leukostasis.
Resumo:
We investigate the mechanisms for fluorescence enhancement and energy transfer near a gold tip in apertureless scanning near-field optical microscopy. Using a simple quasi-static model, we show that the observed enhancement of fluorescence results from competition between enhancement and quenching, and is dependent on a range of experimental parameters. We find good qualitative agreement with the results of measurements of the effect of both sharp and blunt tips on quantum dot fluorescence, and provide a demonstration of tip-enhanced fluorescence imaging with 60 nm resolution.
Resumo:
Optical signals measured in apertureless scanning near field optical microscopy (ASNOM) under ambient conditions are found to be affected significantly by the thin water layer absorbed on the surface under investigation, the presence of which is detected through measurements of the shear force experienced by the tip. This water layer also results in a large hysteresis between optical signals measured during approach and withdrawal of the tip to the sample surface. The role of this effect in ASNOM is anticipated to be significant, with the possibility of resultant topographically induced artefacts for ASNOM involving intermittent contact of tip and sample, but also providing a potential mechanism for nanoscale optical resolution.
The quality of reporting of diagnostic accuracy studies in glaucoma using scanning laser polarimetry
Resumo:
PURPOSE: Scanning laser polarimetry (SLP) has been proposed as a useful diagnostic test for glaucoma. This study was conducted to evaluate the quality of reporting of published studies using the SLP for diagnosing glaucoma. METHODS: A validated Medline and hand search of English-language articles reporting on measures of diagnostic accuracy of the SLP for glaucoma was performed. Two reviewers independently selected and appraised the manuscripts. The Standards for Reporting of Diagnostic Accuracy (STARD) checklist was used to evaluate the quality of each publication. RESULTS: A total of 47 papers were identified of which the first 10 (from 1997 to 2000) and the last 10 articles (from 2004 to 2005) were appraised. Interobserver rating agreement of STARD items was high (85.5% agreement, ?=0.796). The number of STARD items properly reported ranged from 3/25 to 19/25. Only a quarter of studies (5/20) explicitly reported more than half of the STARD items. Important aspects of the methodology were often missing such as participant sampling (reported in 40% of manuscripts), masking of the readers of the index test and reference standard (reported in 20% of manuscripts), and estimation of uncertainty (eg, 95% confidence intervals, reported in 25% of manuscripts). There was a slight increase in the number of STARD items reported with time. CONCLUSIONS: The quality of reporting of diagnostic accuracy tests for glaucoma with SLP is suboptimal. The STARD initiative may be a useful tool for appraising the strengths and weaknesses of diagnostic accuracy studies. © 2007 Lippincott Williams & Wilkins, Inc.
Resumo:
Objective: To detect and quantitate changes in optic nerve morphology after glaucoma surgery using the Heidelberg Retina Tomograph (HRT, Heidelberg Instruments, Heidelberg, Germany). Design: Nonconsecutive observational case series. Participants and Intervention: The authors prospectively enrolled 21 adult patients undergoing incisional glaucoma surgery for progressive glaucoma damage. Quantitative analysis of the optic nerve head by scanning laser tomography and automated perimetry were performed before and after glaucoma surgery. Main Outcome Measures: Changes in optic nerve parameters were subjected to linear regression analysis with respect to percent of postoperative reduction of intraocular pressure (IOP), as well as with respect to age, refraction, preoperative cup:disc ratio, and change in visual field parameters. Results: Seventeen patients had pre- and postoperative images suitable for analysis. Mean IOP at the time of image acquisition before surgery was 30.5 ± 12 mmHg, and after surgery 11.8 ± 5.2 mmHg (mean follow-up, 26 ± 7 weeks). Eleven of 13 (85%) patients having IOP reduction of greater than 40% showed improvement in optic disc parameters. All four patients with less than 25% reduction in IOP showed worsening of most parameters. Changes in optic disc parameters were highly correlated with percent IOP reduction and with age. The parameters in which change most strongly correlated with percent change of IOP were cup area, rim area, cup:disc ratio, and mean cup depth (each, P <0.005). The age of the patient correlated highly with change in maximum cup depth (P <0.005). Refraction and clinically determined cup:disc ratio correlated poorly with changes in measured optic disc parameters. Clinical improvement in visual fields was correlated with the degree of improvement of cup:disc ratio (P = 0.025). Conclusion: Most patients showing a 40% lowering of IOP after glaucoma surgery show improved optic nerve morphology as measured by the HRT. The amount of improvement correlated highly with the percent reduction of IOP.
Resumo:
NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.
Resumo:
The application of electric bias across tip–surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after 12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
Resumo:
Scanning Probes for Fuel Cells and Local Electrochemistry
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.
Resumo:
In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.
Resumo:
Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.
Resumo:
The operational lifetime of hip replacement prostheses can be severely limited due to the occurrence of excessive wear at the load-bearing interfaces. The aim of this study was to investigate how the surface topography of articulating counterfaces evolves over the duration of a laboratory wear run. It was observed that modular stainless steel femoral heads wearing against ultrahigh molecular weight polyethylene (UHMWPE) can themselves be subject to wearing. A comparison with retrieved in vivo-aged femoral heads shows many topographical similarities: in a qualitative sense, scratching and pitting are evident on laboratory and in vivo-worn femoral heads; quantitatively, roughness comparisons between the new and worn devices are seen to increase typically by a factor of 4 after laboratory wearing. The observations suggest that a particular wear mode, namely third-body wear, is responsible for the increased roughness. It is conjectured that third bodies might arise through surface fatigue wear on the metal counterface, Wear debris is also observed to have been generated from the polymer surface, creating rounded debris with sizes predominantly in the range 0.4-0.8 microns: dimensions that are comparable to values previously reported for in vivo generated debris.