997 resultados para Concurrent measurements
A new algorithm for spectral and spatial reconstruction of proton beams from dosimetric measurements
Resumo:
We report on a new algorithm developed for the dosimetric analysis of broad-spectrum, multi-MeV laser-accelerated proton beams. The algorithm allows the reconstruction of the proton beam spectrum from radiochromic film data. This processing technique makes dosimetry measurements a viable alternative to the use of track detectors for spatially and spectrally resolved proton beam analysis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 MJ). Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle ß between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining ß we attempt to statistically determine the distribution of the real spin-orbit angle ?. Results: We found that three of our targets have ß above 90°: WASP-2b: ß = 153°+11-15, WASP-15b: ß = 139.6°+5.2-4.3 and WASP-17b: ß = 148.5°+5.1-4.2; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848+0.00085-0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of ß and our six and transforming them into a distribution of ? we find that between about 45 and 85% of hot Jupiters have ? > 30°. Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.
Resumo:
We show that an electrostatic qubit located near a Bose-Einstein condensate trapped in a symmetric double-well potential can be used to measure the duration the qubit has spent in one of its quantum states. The strong, medium, and weak measurement regimes are analyzed. The analogy between the residence and the traversal (tunnelling) times is highlighted.
Resumo:
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubit's density matrix. The qubit's evolution exhibits a slow (proportional to 1/root t) damping of the qubit's coherence term, which however turns to be a Gaussian one in the case of static qubit. This is in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.
Resumo:
The onset of filamentation, following the interaction of a relatively long (tau(L) similar or equal to 1 ns) and intense (I-L similar or equal to 5 x 10(14) W/cm(2)) laser pulse with a neopentane filled gas bag target, has been experimentally studied via the proton radiography technique, in conditions of direct relevance to the indirect drive inertial confinement fusion scheme. The density gradients associated with filamentation onset have been spatially resolved yielding direct and unambiguous evidence of filament formation and quantitative information about the filamentation mechanism in agreement with previous theoretical modelings. Experimental data confirm that, once spatially smoothed laser beams are used, filamentation is not a relevant phenomenon during the heating laser beams propagation through typical hohlraum gas fills.
Resumo:
This paper outlines the use of phasor measurement unit (PMU) records to validate models of fixed speed induction generator (FSIG)-based wind farms during frequency transients. Wind turbine manufacturers usually create their own proprietary models which they can supply to power system utilities for stability studies, subject to confidentiality agreements. However, it is desirable to confirm the accuracy of supplied models with measurements from the particular installation, in order to assess their validity under real field conditions. This is prudent due to possible changes in control algorithms and design retrofits, not accurately reflected or omitted in the supplied model. One important aspect of such models, especially for smaller power systems with limited inertia, is their accuracy during system frequency transients. This paper, therefore, assesses the accuracy of FSIG models with regard to frequency stability, and hence validates a subset of the model dynamics. Such models can then be used with confidence to assess wider system stability implications. The measured and simulated response of a wind farm using doubly fed induction generator (DFIG) technology is also assessed.
Resumo:
Regional groundwater flow in high mountainous terrain is governed by a multitude of factors such as geology, topography, recharge conditions, structural elements such as fracturation and regional fault zones as well as man-made underground structures. By means of a numerical groundwater flow model, we consider the impact of deep underground tunnels and of an idealized major fault zone on the groundwater flow systems within the fractured Rotondo granite. The position of the free groundwater table as response to the above subsurface structures and, in particular, with regard to the influence of spatial distributed groundwater recharge rates is addressed. The model results show significant unsaturated zones below the mountain ridges in the study area with a thickness of up to several hundred metres. The subsurface galleries are shown to have a strong effect on the head distribution in the model domain, causing locally a reversal of natural head gradients. With respect to the position of the catchment areas to the tunnel and the corresponding type of recharge source for the tunnel inflows (i.e. glaciers or recent precipitation), as well as water table elevation, the influence of spatial distributed recharge rates is compared to uniform recharge rates. Water table elevations below the well exposed high-relief mountain ridges are observed to be more sensitive to changes in groundwater recharge rates and permeability than below ridges with less topographic relief. In the conceptual framework of the numerical simulations, the model fault zone has less influence on the groundwater table position, but more importantly acts as fast flow path for recharge from glaciated areas towards the subsurface galleries. This is in agreement with a previous study, where the imprint of glacial recharge was observed in the environmental isotope composition of groundwater sampled in the subsurface galleries. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
In older adults, cognitive resources play a key role in maintaining postural stability. In the present study, we evaluated whether increasing postural instability using sway referencing induces changes in resource allocation in dual-task performance leading older adults to prioritize the more age-salient posture task over a cognitive task. Young and older adults participated in the study which comprised two sessions. In the first session, three posture tasks (stable, sway reference visual, sway reference somatosensory) and a working memory task (n-back) were examined. In the second session, single- and dual-task performance of posture and memory were assessed. Postural stability improved with session. Participants were more unstable in the sway reference conditions, and pronounced age differences were observed in the somatosensory sway reference condition. In dual-task performance on the stable surface, older adults showed an almost 40% increase in instability compared to single-task. However, in the sway reference somatosensory condition, stability was the same in single- and dual-task performance, whereas pronounced (15%) costs emerged for cognition. These results show that during dual-tasking while standing on a stable surface, older adults have the flexibility to allow an increase in instability to accommodate cognitive task performance. However, when instability increases by means of compromising somatosensory information, levels of postural control are kept similar in single- and dual-task, by utilizing resources otherwise allocated to the cognitive task. This evidence emphasizes the flexible nature of resource allocation, developed over the life-span to compensate for age-related decline in sensorimotor and cognitive processing.
Resumo:
This paper presents a new method for tracking Thévenin equivalent parameters for a power system at a node using local Phasor Measurement Unit (PMU) measurements. Three consecutive phasor measurements for voltage and current, recorded at one location, are used. The phase drifts caused by the measurement slip frequency are first determined and phase angles of the measured phasors are corrected so that the corrected phasors are synchronized to the same reference. The synchronized phasors are then used to determine the equivalent Thévenin parameters of the system.