998 resultados para Comunicação e Divulgação Científica
Resumo:
The nucleus isthmi (NI) is a mesencephalic structure of the amphibian brain. It has been reported that NI plays an important role in integration of CO2 chemoreceptor information and glutamate is probably involved in this function. However, very little is known about the mechanisms involved. Recently, it has been shown that nitric oxide synthase (NOS) is expressed in the brain of the frog. Thus the gas nitric oxide (NO) may be involved in different functions in the brain of amphibians and may act as a neurotransmitter or neuromodulator. We tested the hypothesis that NO plays a role in CO2-drive to breathing, specifically in the NI comparing pulmonary ventilation, breathing frequency and tidal volume, after microinjecting 100 nmol/0.5 µl of L-NAME (a nonselective NO synthase inhibitor) into the NI of toads (Bufo paracnemis) exposed to normocapnia and hypercapnia. Control animals received microinjections of vehicle of the same volume. Under normocapnia no significant changes were observed between control and L-NAME-treated toads. Hypercapnia caused a significant (P<0.01) increase in ventilation only after intracerebral microinjection of L-NAME. Exposure to hypercapnia caused a significant increase in breathing frequency both in control and L-NAME-treated toads (P<0.01 for the control group and P<0.001 for the L-NAME group). The tidal volume of the L-NAME group tended to be higher than in the control group under hypercapnia, but the increase was not statistically significant. The data indicate that NO in the NI has an inhibitory effect only when the respiratory drive is high (hypercapnia), probably acting on tidal volume. The observations reported in the present investigation, together with other studies on the presence of NOS in amphibians, indicate a considerable degree of phylogenetic conservation of the NO pathway amongst vertebrates.
Resumo:
Novel S-nitrosothiols possessing a phenolic function were investigated as nitric oxide (NO) donors. A study of NO release from these derivatives was carried out by electron spin resonance (ESR). All compounds gave rise to a characteristic three-line ESR signal in the presence of the complex [Fe(II)(MGD)2], revealing the formation of the complex [Fe(II)(MGD)2(NO)]. Furthermore, tests based on cytochrome c reduction were performed in order to study the ability of each phenolic disulfide, the final organic decomposition product of S-nitrosothiols, to trap superoxide radical anion (O2-). This study revealed a high reactivity of 1b and 3b towards O2-. For these two compounds, the respective inhibitory concentration (IC) 50 values were 92 µM and 43 µM.
Resumo:
The drinking behavior responses to centrally administered NG-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 µg/µl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 ± 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 µg/µl into the SFO before injection of ANG II (12 ng/µl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 µg). The water intake obtained after 40 µg/µl L-NAME was 0.8 ± 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 µg/µl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 ± 0.8, 3.2 ± 0.8 and 0.7 ± 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.
Resumo:
The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.
Resumo:
Injection of an Ascaris suum extract (Asc) affects both the humoral and cellular immune responses to unrelated antigens when it is co-administered with these antigens. In the present study we evaluated the effect of Asc on macrophage activation in the early phase of Mycobacterium bovis BCG (Pasteur strain TMCC 1173) infection in C57Bl/6 mice. C57Bl/6 mice were injected intraperitoneally (ip) with 0.1 mg BCG (BCG group) or BCG plus 1 mg Asc (BCG + Asc group). The peritoneal exudates were obtained at 2, 7 and 14 days after infection. The numbers of IFN-g-secreting cells were assessed by the ELISPOT assay. Nitric oxide (NO) production was measured by the Griess method and by the evaluation of NADPH diaphorase activity in the peritoneal exudates. The administration of Asc extract increased NADPH diaphorase activity (2 days: control = 0, BCG = 7%, BCG + Asc = 13%, and Asc = 4%; 7 days: control = 4, BCG = 13%, BCG + Asc = 21%, and Asc = 4.5%) and TNF-a levels (mean ± SD; 2 days: control = 0, BCG = 169 ± 13, BCG + Asc = 202 ± 37, and Asc = 0; 7 days: control = 0, BCG = 545 ± 15.5, BCG + Asc = 2206 ± 160.6, and Asc = 126 ± 26; 14 days: control = 10 ± 1.45, BCG = 9 ± 1.15, BCG + Asc = 126 ± 18, and Asc = 880 ± 47.67 pg/ml) in the early phase of BCG infection. Low levels of NO production were detected at 2 and 7 days after BCG infection, increasing at 14 days (mean ± SD; 2 days: control = 0, BCG = 3.7 ± 1.59, BCG + Asc = 0.82 ± 0.005, Asc = 0.48 ± 0.33; 7 days: control = 0, BCG = 2.78 ± 1.54, BCG + Asc = 3.07 ± 1.05, Asc = 0; 14 days: control = 0, BCG = 9.05 ± 0.53, BCG + Asc = 9.61 ± 0.81, Asc = 10.5 ± 0.2 (2 x 106) cells/ml). Furthermore, we also observed that Asc co-injection induced a decrease of BCG-colony-forming units (CFU) in the spleens of BCG-infected mice during the first week of infection (mean ± SD; 2 days: BCG = 1.13 ± 0.07 and BCG + Asc = 0.798 ± 0.305; 7 days: BCG = 1.375 ± 0.194 and BCG + Asc = 0.548 ± 0.0226; 14 days: BCG = 0.473 ± 0.184 and BCG + Asc = 0.675 ± 0.065 (x 102) CFU). The present data suggest that Asc induces the enhancement of the immune response in the early phase of BCG infection.
Resumo:
Nitric oxide (NO) is an extremely important and versatile messenger in biological systems. It has been identified as a cytotoxic factor in the immune system, presenting anti- or pro-inflammatory properties under different circumstances. In murine monocytes and macrophages, stimuli by cytokines or lipopolysaccharide (LPS) are necessary for inducing the immunologic isoform of the enzyme responsible for the high-output production of NO, nitric oxide synthase (iNOS). With respect to human cells, however, LPS seems not to stimulate NO production in the same way. Addressing this issue, we demonstrate here that peripheral blood mononuclear cells (PBMC) obtained from schistosomiasis-infected patients and cultivated with parasite antigens in the in vitro granuloma (IVG) reaction produced more nitrite in the absence of LPS. Thus, LPS-induced nitrite levels are easily detectable, although lower than those detected only with antigenic stimulation. Concomitant addition of LPS and L-N-arginine methyl ester (L-NAME) restored the ability to produce detectable levels of nitrite, which had been lost with L-NAME treatment. In addition, LPS caused a mild decrease of the IVG reaction and its association with L-NAME was responsible for reversal of the L-NAME-exacerbating effect on the IVG reaction. These results show that LPS alone is not as good an NO inducer in human cells as it is in rodent cells or cell lines. Moreover, they provide evidence for interactions between LPS and NO inhibitors that require further investigation.
Resumo:
Nitric oxide (NO·) has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-). ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.
Resumo:
Pedagogic education of graduate students, when and where it exists, is restricted to theoretical courses or to the participation of the students as teachers' assistants. This model is essentially reproductive and offers few opportunities for any significant curriculum innovation. To open an opportunity for novelty we have introduced a new approach in "Biochemistry Teaching", a course included in the Biochemistry Graduate Program of the Biochemistry Department (Universidade Estadual de Campinas and Universidade de São Paulo). The content of the course consists of a) choosing the theme, b) selecting and organizing the topics, c) preparing written material, d) establishing the methodological strategies, e) planning the evaluation tools and, finally, f) as teachers, conducting the course as an optional summer course for undergraduate students. During the first semester the graduate students establish general and specific educational objectives, select and organize contents, decide on the instructional strategies and plan evaluation tools. The contents are explored using a wide range of strategies, which include computer-aided instruction, laboratory classes, small group teaching, a few lectures and round table discussions. The graduate students also organize printed class notes to be used by the undergraduate students. Finally, as a group, they teach the summer course. In the three versions already developed, the themes chosen were Biochemistry of Exercise (UNICAMP), Biochemistry of Nutrition (UNICAMP) and Molecular Biology of Plants (USP). In all cases the number of registrations greatly exceeded the number of places and a selection had to be made. The evaluation of the experience by both graduate and undergraduate students was very positive. Graduate students considered this experience to be unique and recommended it to their schoolmates; the undergraduate students benefited from a more flexible curriculum (more options) and gave very high scores to both the courses and the teachers.
Resumo:
Infection with Wuchereria bancrofti, Brugia malayi, or B. timori not only affects the structure and function of lymphatic vessels but is also associated with extralymphatic pathology and disease. Because it is now possible to detect living adult worms by ultrasonography, much emphasis is placed on lymphatic pathology. However, the finding of renal damage in asymptomatic microfilaremic carriers has led to increased recognition of the importance of extralymphatic clinical manifestation in bancroftian filariasis. The authors present a number of clinical syndromes that may be manifestations of extralymphatic filarial disease and discuss possible mechanisms that cause these conditions. The main purpose of this paper is to raise the awareness of students and physicians of the prevalence and the importance of extralymphatic disease in bancroftian filariasis so that it is diagnosed and treated properly and also to alert for the need of additional research in this area.
Resumo:
The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA) genes are rapidly transcribed by RNA polymerase I (pol I) molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA) synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.
Resumo:
The data reviewed here suggest the possibility that a global reduction of blood supply to the whole brain or solely to the infratentorial structures down to the range of ischemic penumbra for several hours or a few days may lead to misdiagnosis of irreversible brain or brain stem damage in a subset of deeply comatose patients with cephalic areflexia. The following proposals are advanced: 1) the lack of any set of clinically detectable brain functions does not provide a safe diagnosis of brain or brain stem death; 2) apnea testing may induce irreversible brain damage and should be abandoned; 3) moderate hypothermia, antipyresis, prevention of arterial hypotension, and occasionally intra-arterial thrombolysis may contribute to good recovery of a possibly large subset of cases of brain injury currently regarded as irreversible; 4) confirmatory tests for brain death should not replace or delay the administration of potentially effective therapeutic measures; 5) in order to validate confirmatory tests, further research is needed to relate their results to specific levels of blood supply to the brain. The current criteria for the diagnosis of brain death should be revised.
Resumo:
The aminopeptidase activity of Phaseolus vulgaris seeds was measured using L-Leu-p-nitroanilide and the L-aminoacyl-ß-naphthylamides of Leu, Ala, Arg and Met. A single peak of aminopeptidase activity on Leu-ß-naphthylamide was eluted at 750 µS after gradient elution chromatography on DEAE-cellulose of the supernatant of a crude seed extract. The effluent containing enzyme activity was applied to a Superdex 200 column and only one peak of aminopeptidase activity was obtained. SDS-polyacrylamide gel electrophoresis (10%) presented only one protein band with molecular mass of 31 kDa under reducing and nonreducing conditions. The aminopeptidase has an optimum pH of 7.0 for activity on all substrates tested and the highest Vmax/KM ratio for L-Leu-ß-naphthylamide. The enzyme activity was increased 40% by 0.15 M NaCl, inhibited 94% by 2.0 mM Zn2+, inhibited 91% by sodium p-hydroxymercuribenzoate and inhibited 45% by 0.7 mM o-phenanthroline and 30 µM EDTA. Mercaptoethanol (3.3 mM), dithioerythritol (1.7 mM), Ala, Arg, Leu and Met (70 µM), p-nitroaniline (0.25 mM) and ß-naphthylamine (0.53 mM) had no effect on enzyme activity when assayed with 0.56 mM of substrate. Bestatin (20 µM) inhibited 18% the enzyme activity. The aminopeptidase activity in the seeds decayed 50% after two months when stored at 4oC and room temperature. The enzyme is leucyl aminopeptidase metal- and thiol group-dependent.
Resumo:
The aim of this work was to compare the performance of isotope-selective non-dispersive infrared spectrometry (IRIS) for the 13C-urea breath test with the combination of the 14C-urea breath test (14C-UBT), urease test and histologic examination for the diagnosis of H. pylori (HP) infection. Fifty-three duodenal ulcer patients were studied. All patients were submitted to gastroscopy to detect HP by the urease test, histologic examination and 14C-UBT. To be included in the study the results of the 3 tests had to be concordant. Within one month after admission to the study the patients were submitted to IRIS with breath samples collected before and 30 min after the ingestion of 75 mg 13C-urea dissolved in 200 ml of orange juice. The samples were mailed and analyzed 11.5 (4-21) days after collection. Data were analyzed statistically by the chi-square and Mann-Whitney test and by the Spearman correlation coefficient. Twenty-six patients were HP positive and 27 negative. There was 100% agreement between the IRIS results and the HP status determined by the other three methods. Using a cutoff value of delta-over-baseline (DOB) above 4.0 the IRIS showed a mean value of 19.38 (minimum = 4.2, maximum = 41.3, SD = 10.9) for HP-positive patients and a mean value of 0.88 (minimum = 0.10, maximum = 2.5, SD = 0.71) for negative patients. Using a cutoff value corresponding to 0.800% CO2/weight (kg), the 14C-UBT showed a mean value of 2.78 (minimum = 0.89, maximum = 5.22, SD = 1.18) in HP-positive patients. HP-negative patients showed a mean value of 0.37 (minimum = 0.13, maximum = 0.77, SD = 0.17). IRIS is a low-cost, easy to manage, highly sensitive and specific test for H. pylori detection. Storing and mailing the samples did not interfere with the performance of the test.
Resumo:
The excretion ratio of lactulose/mannitol in urine has been used to assess the extension of malabsorption and impairment of intestinal permeability. The recovery of lactulose and mannitol in urine was employed to evaluate intestinal permeability in children with and without diarrhea. Lactulose and mannitol probes were measured using high-performance liquid chromatography with pulsed amperometric detection (HPLC-PAD). Two groups of solutions containing 60 µM sugars were prepared. Group I consisted of glucosamine, mannitol, melibiose and lactulose, and group II of inositol, sorbitol, glucose and lactose. In the study of intra-experiment variation, a sample of 50 µl from each group was submitted to 4 successive determinations. The recovered amounts and retention times of each sugar showed a variation <2 and 1%, respectively. The estimated recovery was >97%. In the study of inter-experiment variation, we prepared 4 independent samples from groups I and II at the following concentrations: 1.0, 0.3, 0.1, 0.03 and 0.01 mM. The amounts of the sugars recovered varied by <10%, whereas the retention times showed an average variation <1%. The linear correlation coefficients were >99%. Retention (k'), selectivity (a) and efficiency (N) were used to assess the chromatographic conditions. All three parameters were in the normal range. Children with diarrhea presented a greater lactulose/mannitol ratio compared to children without diarrhea.