845 resultados para Computer aided analysis, Machine vision, Video surveillance
Resumo:
[ES] El proyecto estudia algoritmos de detección de bordes aplicados a imágenes fotográficas y procedentes de nubes de puntos, posteriormente combina los resultados y analiza las posibilidades de mejora de la solución conjunta.
Resumo:
In the last decades big improvements have been done in the field of computer aided learning, based on improvements done in computer science and computer systems. Although the field has been always a bit lagged, without using the latest solutions, it has constantly gone forward taking profit of the innovations as they show up. As long as the train of the computer science does not stop (and it won’t at least in the near future) the systems that take profit of those improvements will not either, because we humans will always need to study; Sometimes for pleasure and some other many times out of need. Not all the attempts in the field of computer aided learning have been in the same direction. Most of them address one or some few of the problems that show while studying and don’t take into account solutions proposed for some other problems. The reasons for this can be varied. Sometimes the solutions simply are not compatible. Some other times, because the project is an investigation it’s interesting to isolate the problem. And, in commercial products, licenses and patents often prevent the new projects to use previous work. The world moved forward and this is an attempt to use some of the options offered by technology, mixing some old ideas with new ones.
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)