978 resultados para Common Scrambling Algorithm Stream Cipher
Resumo:
Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.
Resumo:
The current shortage of highway funds precludes the immediate replacement of most of the bridges that have been evaluated as structurally deficient or functionally obsolete or both. A low water stream crossing (LWSC) affords an economical alternative to the replacement of a bridge with another bridge in many instances. However, the potential liability that might be incurred from the use of LWSCs has served as a deterrent to their use. Nor have guidelines for traffic control devices been developed for specific application to LWSCs. This research addressed the problems of liability and traffic control associated with the use of LWSCs. Input to the findings from this research was provided by several persons contacted by telephone plus 189 persons who responded to a questionnaire concerning their experience with LWSCs. It was concluded from this research that a significant potential for accidents and liability claims could result from the use of LWSCs. However, it was also concluded that this liability could be reduced to within acceptable limits if adequate warning of the presence of an LWSC were afforded to road users. The potential for accidents and liability could further be reduced if vehicular passage over an LWSC were precluded during periods when the road was flooded. Under these conditions, it is believed, the potential for liability from the use of an LWSC on an unpaved, rural road would be even less than that resulting from the continuing use of an inadequate bridge. The signs recommended for use in advance of an LWSC include two warning signs and one regulatory sign with legends as follows: FLOOD AREA AHEAD, IMPASSABLE DURING HIGH WATER, DO NOT ENTER WHEN FLOODED. Use of the regulatory sign would require an appropriate resolution by the Board of Supervisors having responsibility for a county road. Other recommendations include the optional use of either a supple mental distance advisory plate or an advisory speed plate, or both, under circumstances where these may be needed. It was also recommended HR-218 Liability & Traffic Control Considerations for Low Water Stream Crossings that LWSCs be used only on unpaved roads and that they not be used in locations where flooding of an LWSC would deprive dwelling places of emergency ground access.
Resumo:
Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.
Resumo:
Workgroup diversity can be conceptualized as variety, separation, or disparity. Thus, the proper operationalization of diversity depends on how a diversity dimension has been defined. Analytically, the minimal diversity must be obtained when there are no differences on an attribute among the members of a group, however maximal diversity has a different shape for each conceptualization of diversity. Previous work on diversity indexes indicated maximum values for variety (e.g., Blau"s index and Teachman"s index), separation (e.g., standard deviation and mean Euclidean distance), and disparity (e.g., coefficient of variation and the Gini coefficient of concentration), although these maximum values are not valid for all group characteristics (i.e., group size and group size parity) and attribute scales (i.e., number of categories). We demonstrate analytically appropriate upper boundaries for conditional diversity determined by some specific group characteristics, avoiding the bias related to absolute diversity. This will allow applied researchers to make better interpretations regarding the relationship between group diversity and group outcomes.
Resumo:
The genotypic differences on growth and yield of common bean (Phaseolus vulgaris L.) in response to P supply were evaluated in a field experiment under biological N2 fixation. Eight cultivars were grown at two levels of applied P (12 and 50 kg ha-1 of P -- P1 and P2 respectively), in randomized block design in factorial arrangement. Vegetative biomass was sampled at three ontogenetic stages. The effects of genotype and phosphorus were significant for most traits, but not the genotype ´ phosphorus interaction. The cultivars presented different patterns of biomass production and nutrient accumulation, particularly on root system. At P1, P accumulation persisted after the beginning of pod filling, and P translocation from roots to shoots was lower. The nodule senescence observed after flowering might have reduced N2 fixation during pod filling. The responses of vegetative growth to the higher P supply did not reflect with the same magnitude on yield, which increased only 6% at P2; hence the harvest index was lower at P2. The cultivars with highest yields also presented lower grain P concentrations. A sub-optimal supply of N could have limited the expression of the yield potential of cultivars, reducing the genotypic variability of responses to P levels.
Resumo:
Recent studies indicate that directional female mate choice and order-dependent female mate choice importantly contribute to non-random mating patterns. In species where females prefer larger sized males, disentangling different hypotheses leading to non-random mating patterns is especially difficult, given that male size usually correlates with behaviours that may lead to non-random mating (e.g. size-dependent emergence from hibernation, male fighting ability). Here we investigate female mate choice and order-dependent female mate choice in the polygynandrous common lizard (Lacerta vivipara). By sequentially presenting males in random order to females, we exclude non-random mating patterns potentially arising due to intra-sexual selection (e.g. male-male competition), trait-dependent encounter probabilities, trait-dependent conspicuousness, or trait-dependent emergence from hibernation. To test for order-dependent female mate choice we investigate whether the previous mating history affects female choice. We show that body size and body condition of the male with which a female mated for the first time were bigger and better, respectively, than the average body size and body condition of the rejected males. There was a negative correlation between body sizes of first and second copulating males. This indicates that female mate choice is dependent on the previous mating history and it shows that the female's choice criteria are non-static, i.e. non-directional. Our study therefore suggests that context-dependent female mate choice may not only arise due to genotype-environment interactions, but also due to other female mating strategies, i.e. order-dependent mate choice. Thus context-dependent female mate choice might be more frequent than previously thought.
Resumo:
The common shrew Sorex araneus Linnaeus, 1758 is subject to intense chromosomal polymorphism. About 65 chromosome races are presently known. One of these chromosome races (the Valais race) is karyologically, morphologically, biochemically, and genetically clearly distinct from all other chromosome races of the species. Recent studies of hybrid zones between the Valais race and other chromosome races in the Swiss and French Alps add further strong evidence for the specific taxonomic status of the Valais race. Chromosomes and diagnostic protein markers reveal sharp frequency clines and strong heterozygote deficits. In one hybrid zone, the maintenance of the strong genetic differentiation of the hybridizing taxa was confirmed by a study with autosomal microsatellites indicating minimal gene flow. A microsatellite marker on the Y-chromosome showed complete absence of male mediated gene flow suggesting hybrid male sterility. To clarify the taxonomic status of this taxon, additional analyses were conducted. A morphometric analysis of the mandible indicated the Valais race is morphologically as distinct from neighbouring chromosome races of S. araneus as from other related Sorex species. In a phylogeny based on complete mitochondrial DNA cytochrome b gene sequences, the Valais race clearly appears as the sister taxon to all other races of S. araneus. Therefore, the chromosome race Valais of S. araneus herein is elevated to specific status and the name Sorex antinorii Bonaparte, 1840 is applied.
Resumo:
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
The processing of human bodies is important in social life and for the recognition of another person's actions, moods, and intentions. Recent neuroimaging studies on mental imagery of human body parts suggest that the left hemisphere is dominant in body processing. However, studies on mental imagery of full human bodies reported stronger right hemisphere or bilateral activations. Here, we measured functional magnetic resonance imaging during mental imagery of bilateral partial (upper) and full bodies. Results show that, independently of whether a full or upper body is processed, the right hemisphere (temporo-parietal cortex, anterior parietal cortex, premotor cortex, bilateral superior parietal cortex) is mainly involved in mental imagery of full or partial human bodies. However, distinct activations were found in extrastriate cortex for partial bodies (right fusiform face area) and full bodies (left extrastriate body area). We propose that a common brain network, mainly on the right side, is involved in the mental imagery of human bodies, while two distinct brain areas in extrastriate cortex code for mental imagery of full and upper bodies.
Resumo:
Since the turn of the century, tributaries to the Missouri River in western Iowa have entrenched their channels to as much as six times their original depth. This channel degradation is accompanied by widening as the channel side slopes become unstable and landslides occur. The deepening and widening of these streams have endangered about 25% of the highway bridges in 13 counties [Lohnes et al. 1980]. Grade stabilization structures have been recommended as the most effective remedial measure for stream degradation [Brice et al., 1978]. In western Iowa, within the last seven years, reinforced concrete grade stabilization structures have cost between $300,000 and $1,200,000. Recognizing that the high cost of these structures may be prohibitive in many situations, the Iowa Department of Transportation (Iowa DOT) sponsored a study at Iowa State University (ISU) to find low-cost alternative structures. This was Phase I of the stream degradation study. Analytical and laboratory work led to the conclusion that alternative construction materials such as gabions and soil-cement might result in more economical structures [Lohnes et al. 1980]. The ISU study also recommended that six experimental structures be built and their performance evaluated. Phase II involved the design of the demonstration structures, and Phase III included monitoring and evaluating their performance.
Resumo:
Since the beginning of channel straightening at the turn of the century, the streams of western Iowa have degraded 1.5 to 5 times their original depth. This vertical degradation is often accompanied by increases in channel widths of 2 to 4 times the original widths. The deepening and widening of these streams has jeopardized the structural safety of many bridges by undercutting footings or pile caps, exposing considerable length of piling, and removing soil beneath and adjacent to abutments. Various types of flume and drop structures have been introduced in an effort to partially or totally stabilize these channels, protecting or replacing bridge structures. Although there has always been a need for economical grade stabilization structures to stop stream channel degradation and protect highway bridges and culverts, the problem is especially critical at the present time due to rapidly increasing construction costs and decreasing revenues. Benefits derived from stabilization extend beyond the transportation sector to the agricultural sector, and increased public interest and attention is needed.