885 resultados para Columna vertebral
Resumo:
BACKGROUND: Malignant lymphoma of the prostate is rare. In the literature, about 165 cases with either a primary lymphoma of the prostate or secondary infiltration of the prostate by a lymphoma are described. CASE REPORT: The case of a 59-year-old patient with an irregular tumor in the prostatic region, but normal prostate-specific antigen (PSA), a fracture in the vertebral column and a bilateral enlargement of the suprarenal glands is presented. Repetitive prostate biopsy revealed the diagnosis of a diffuse large B cell lymphoma. Further staging examinations gave hints to an epidural infiltration. A polychemotherapy including intrathecal drug applications was initiated. Staging after four therapeutic cycles already showed good partial remission of all lymphoma manifestations. After two further therapeutic cycles, a CT scan showed a small rest of prostatic bulk, but PET-CT did not detect vital lymphatic tissue (complete remission). CONCLUSION: In cases of irregular prostatic enlargements, carcinoma has to be considered as the most frequent diagnosis. Nevertheless, also a solitary lymphoma or infiltration of the prostate by a systemic lymphoma has to be taken into account, especially if the PSA value is in the normal range.
Resumo:
PURPOSE OF REVIEW: Vertebroplasty, kyphoplasty and lordoplasty are minimally invasive procedures mainly performed for refractory pain due to osteoporotic vertebral body fractures. This review summarizes recent findings on outcome, complications and their impact on anesthetic management. RECENT FINDINGS: Despite an increasing number of publications on surgical technique, therapeutic efficacy and side effects of these interventions, anesthetic management per se is hardly investigated. All three treatments provide similar pain relief. Adverse effects include local cement leakage and new fractures adjacent to augmented vertebrae. Asymptomatic pulmonary cement embolism occurs in 4.6-6.8% of patients depending on cement viscosity, injection pressure and number of injected vertebrae. Potentially life-threatening embolism of cement or fat may occur. Kyphoplasty and lordoplasty aim at correcting vertebral deformity and are equally effective; lordoplasty is substantially less expensive, however. The incidence of systemic cement or fat embolism is similar to that in vertebroplasty. Whereas vertebroplasty is mostly performed under local anesthesia and sedation, general anesthesia is required for kyphoplasty and lordoplasty. The anesthetic regimen follows the principles of anesthesia in the elderly population. SUMMARY: Vertebroplasty, kyphoplasty and lordoplasty are effective minimally invasive treatments for stable vertebral compression fractures without compression of the spinal canal. The anesthesiologist must be prepared to manage systemic cement or fat embolism.
Resumo:
The purpose of this study was to analyze the suitability of the cerebral vasculature of the pig regarding a revascularization procedure. In two 60 kg pigs the femoral artery was exposed and canulated for selective angiography and interventional procedures. After the angiography, the pigs were brought to the animal OR for craniotomy and analysis of the intracranial cerebral arteries and the surgical exposure of the carotid arteries under the microscope. Angiography demonstrated the presence of a true internal-, external carotid artery and vertebral arteries. Both the vertebral and internal carotid arteries are feeding a rete mirabilis both at the cranial base and the cranio-cervical junction. At these sites further advancement of the angiography catheter was not possible. Out of these rete mirabilis, an intracranial carotid artery and an intracranial vertebral artery were formed, respectively. The intracranial cerebral vessels were of the dimension of 1 mm and less. The extracranial portion of the internal carotid artery was 2.5 mm of diameter. From these findings, we conclude that a direct cerebral revascularization procedure of the intracranial vessels is not possible in the swine. However, a global revascularization procedure on the extracranial portion of the internal carotid artery is thus feasible, both using a low- and high-flow anastamosis technique.
Resumo:
Aim of the study was to investigate the possible mechanisms leading to stunted growth and osteoporosis in experimental arthritis. Fourty-two female rats of 7-8 weeks of age were randomly assigned to three groups of 14 animals each: (a) controls; (b) adjuvant-inoculated (AA); and (c) adjuvant-inoculated rats receiving 10 mg cyclosporin A (CsA) orally for 30 days. Biological parameters studied were: hindpaw swelling; vertebral length progression expressed as Delta increments between days 1 and 30 as a parameter of skeletal growth, and estimation of total skeletal mineral content by dual energy X-ray absorptiometry (n=10 each group) on day 30. Endocrine parameters measured were pulsatile release of growth hormone (rGH) on day 30 following jugular cannulation and measurement of insulin-like growth factor (IGF-1) in pooled plasma from rGH profiles. Results can be summarized as follows: Untreated AA rats exhibited local signs of inflammation in comparison with controls (hindpaw diameter 8.1-8.9 mm vs. 5.3-5.6 mm in controls). Treatment with CsA normalized this parameter (4.9-5.6 mm). Vertebral growth was significantly retarded in AA rats in comparison with controls (214+/-32 vs. 473+/-33 microm; p<0.001). Administration of CsA normalized vertebral size increment with a clear tendency to overgrowth (523+/-43 microm, n.s.). There was also a marked reduction in total skeletal mineral content in diseased (AA) rats as compared to controls (5.8+/-0.1 vs. 7.5+/-0.1g [OH-apatite]; p<0.001), and a moderate but significant increment above controls in the group receiving CsA (8.0+/-0.1 vs. 7.5+/-0.1g [OH-appatite]; p<0.04). Integrated rGH profiles exhibited a significant fall in arthritic rats and were completely restored to normal under CsA treatment. A trend toward higher rGH values was observed in the latter group (2908+/-554 in AA vs. 8317+/-1492 ng/ml/240 min in controls; p<0.001, and 10940+/-222 ng/ml/240 min, n.s. in the CsA group). There was a good correlation between skeletal growth and rGH pulsatility (r=0.81; p<0.001). IGF-1 followed a similar pattern (630+/-44 in AA vs. 752+/-30 ng/ml in controls; p<0.04, and 769+/-59 ng/ml in the CsA group, n.s. vs. controls). Thus, a clear tendency to skeletal overgrowth following treatment was observed in agreement with the hormonal data. It can therefore be concluded that, in experimental arthritis, attenuated GH-spiking and reduced circulating IGF-1 appear to be causally related to growth retardation, probably mimicking signs and symptoms observed in juvenile arthritis. Therapy with CsA is followed by normalization of hormonal and biological parameters accompanied by a catch up phenomenon in skeletal growth which is also observed clinically in juvenile arthritis. Generalized osteopenia is a prominent feature seemingly connected with the growth abnormalities as they parallel each other during the evolution of the disease and respond equally to therapy.
Resumo:
STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.
Resumo:
Poly(methyl methacrylate) (PMMA) is by far the most frequently used bone substitute material for vertebroplasty. However, there are serious complications, such as cement leakage and an increased fracture rate of the adjacent vertebral bodies. The latter may be related to the mechanical properties of the augmented segment within the osteoporotic spine. A possible counter-measure is prophylactic augmentation at additional levels, but this aggravates the risk for the patient. Introduction of pores is a possible method to reduce the inherent high stiffness of PMMA. This study investigates the effect of porosity on the mechanical properties of PMMA bone cement. Different fractions of a highly viscous liquid were mixed into the PMMA during preparation. An open-porous material with adjustable mechanical properties resulted after removal of the aqueous phase. Different radiopacifiers were admixed to investigate their suitability for vertebroplasty. The final material was characterized mechanically by compressive testing, microscopically and radiologically. In addition, the monomer release subsequent to hardening was measured by means of gas chromatography. The Young's modulus in compression could be varied between 2800 +/- 70 MPa and 120 +/- 150 MPa, and the compression ultimate strength between 170 +/- 5 MPa and 8 +/- 9 MPa for aqueous fractions ranging between 0 and 50% of volume. Only a slight decrease of the Young's modulus and small changes of ultimate strength were found when the mixing time was increased. An organic hydrophilic and lipophilic radiopacifier led to a higher Young's modulus of the porous material; however, the ultimate strength was not significantly affected by adding different radiopacifiers to the porous cement. The radiopacity was lost after washing the aqueous phase out of the pores. No separation occurred between the aqueous and the PMMA phase during injection into an open porous ceramic material. The monomer released was found to increase for increasing aqueous fractions, but remained comparable in magnitude to standard PMMA. This study demonstrates that a conventional PMMA can be modified to obtain a range of mechanical properties, including those of osteoporotic bone.
Resumo:
The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.
Resumo:
Context: In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly - Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. Objective: To identify factors associated with greater efficacy during ZOL 5 mg treatment. Design, Setting and Patients: Subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. Intervention: Single infusion of ZOL 5 mg or placebo at baseline, 12 and 24 months. Main Outcome Measures: Primary endpoints: new vertebral fracture and hip fracture. Secondary endpoints: non-vertebral fracture, change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups: age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index (BMI), concomitant osteoporosis medications. Results: Greater ZOL induced effects on vertebral fracture risk with younger age (treatment-by-subgroup interaction P=0.05), normal creatinine clearance (P=0.04), and BMI >/=25 kg/m(2) (P=0.02). There were no significant treatment-factor interactions for hip or non-vertebral fracture or for change in BMD. Conclusions: ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD.
Resumo:
BACKGROUND: During orthopedic surgery, embolization of bone marrow fat can lead to potentially fatal, intra-operative cardiovascular deterioration. Vasoactive mediators may also be released from the bone marrow and contribute to these changes. Increased plasma levels of endothelin-1 (ET-1) have been observed after pulmonary air and thrombo-embolism. The role of ET-1 in the development of acute cardiovascular deterioration as a result of bone marrow fat embolization during vertebroplasty was therefore investigated. METHODS: Bone cement was injected into three lumbar vertebrae of six sheep in order to force bone marrow fat into the circulation. Invasive blood pressures and heart rate were recorded continuously until 60 min after the last injection. Cardiac output, arterial and mixed venous blood gas parameters and plasma ET-1 concentrations were measured at selected time points. Post-mortem, lung biopsies were taken for analysis of intravascular fat. RESULTS: Cement injections resulted in a sudden (within 1 min) and severe increase in pulmonary arterial pressure (>100%). Plasma concentrations of ET-1 started to increase after the second injection, but no significant changes were observed. Intravascular fat and bone marrow cells were present in all lung lobes. CONCLUSION: Cement injections into vertebral bodies elicited fat embolism resulting in subsequent cardiovascular changes that were characterized by an increase in pulmonary arterial pressure. Cardiovascular complications as a result of bone marrow fat embolism should thus be considered in patients undergoing vertebroplasty. No significant changes in ET-1 plasma values were observed. Thus, ET-1 did not contribute to the acute cardiovascular changes after fat embolism.
Resumo:
Osteolytic lesions of the spine (metastasis, myeloma) can be treated extremely efficiently by percutaneous cement injection. The treatment should be restricted to osteolytic lesions of the vertebral body, and only if a relevant mechanical deterioration is present. If the pedicles and/or the lamina are involved and if there is compression of the spinal canal, the treatment is no longer appropriate. The surgical technique is similar to the treatment of osteoporotic fractures; however, there is definitely a higher risk for cement leakage and the clinical outcome is not as predictable as in osteoporotic fracture treatment. It is important to realize that cement injection per se has no impact on the tumor itself, but provides stability to the vertebral body. An osteolytic lesion without mechanical compromise does not need a vertebroplasty. Patients with tumorous lesions of the spine should be followed by an interdisciplinary team of spine surgeon, oncologist and radio-oncologist.
Resumo:
Vertebroplasty (VP) is a cost-efficient alternative to kyphoplasty. However, it is considered inferior when it comes to maintaining safety and in vertebral body (VB) height restoration. We assess the safety and efficacy of VP in alleviating pain, improving quality of life (QoL), and restoring alignment.
Resumo:
Percutaneous vertebroplasty, comprising of the injection of polymethylmethacrylate (PMMA) into vertebral bodies, is an efficient procedure to stabilize osteoporotic compression fractures as well as other weakening lesions. Besides fat embolism, cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the PMMA during injection plays a key role in this context. It was shown in vitro that the best way to lower the risk of cement leakage is to inject the cement at higher viscosity, which is requires high injection forces. Injection forces can be reduced by applying a newly developed lavage technique as it was shown in vitro using human cadaver vertebrae. The purpose of this study was to prove the in vitro results in an in vivo model. The investigation was incorporated in an animal study that was performed to evaluate the cardiovascular reaction on cement augmentation using the lavage technique. Injection forces were measured with instrumentation for 1 cc syringes, additionally acquiring plunger displacement. Averaged injection forces measured, ranged from 12 to 130 N and from 28 to 140 N for the lavage group and the control group, respectively. Normalized injection forces (by viscosity and injection speed) showed a trend to be lower for the lavage group in comparison to the control group (P = 0.073). In conclusion, the clinical relevance on the investigated lavage technique concerning lowering injection forces was only shown by trend in the performed animal study. However, it might well be that the effect is more pronounced for osteoporotic vertebral bodies.
Resumo:
Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. In order to enhance the safety for the patient, a rheometer system was developed to measure the cement viscosity intraoperatively. For this development, it is of great importance to know the proper viscosity to start the procedure determined by experienced surgeons and the relation between the time period when different injection devices are used and the cement viscosity. The purpose of the study was to investigate the viscosity ranges for different injection systems during conventional vertebroplasty. Clinically observed viscosity values and related time periods showed high scattering. In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break.