981 resultados para Colonic aberrant crypt foci
Resumo:
It is widely accepted that protein oxidation is involved in a variety of diseases, including neurodegenerative diseases. Especially during aging, a reduction in anti-oxidant defence mechanisms leads to an increased formation of free radical oxygen species and consequently results in a damage of proteins, including mitochondrial and synaptic ones. Even those proteins involved in repair and protein clearance via the ubiquitin proteasome and lysosomal system are subject to damage and show a reduced function. Here, we will discuss a variety of mechanisms and provide examples where cognition is affected and where repair mechanisms are no longer sufficient to compensate for a dysfunction of damaged proteins or even may become toxic. Next to physiological deficits, an accumulation of deficient proteins in aggresomes may occur and result in a formation of pathological hallmark structures typical for aging and disease. A major challenge is how to prevent aberrant oxidation, given that oxidation plays an essential role in aging and neurodegenerative diseases. Particularly interesting are the possibilities to reduce the formation of radical oxygen species leading to a dysfunction of protein repair and protein clearance, or to a formation of toxic byproducts accelerating neurodegeneration.
Resumo:
Appendicular tumors are mostly found incidentally in up to 1.5% of all appendectomies. Neuroendocrine tumors are the commonest malignancies, and are associated with an excellent long-term prognosis. While small lesions located at the appendicular tip can be treated with simple appendectomy, advanced tumors require right hemicolectomy. Goblet cell carcinoids are rare tumors showing a mixed phenotype. Long-term outcome is impaired, and for most cases a right hemicolectomy is mandatory. Colonic-type adenocarcinomas have a similar behavior like conventional colonic cancer and should be treated similarly. Mucinous neoplasias possess the characteristic of extensive mucin production with intraperitoneal spread. Treatment options are ranging from right hemicolectomy to multivisceral resection with intraperitoneal chemotherapy.
Resumo:
Treatment of colonic diverticular disease has evolved over the past years. Most episodes are simple and can be successfully treated with antibiotics alone. For complicated diverticulitis, a strong trend is developing towards less invasive therapies including interventional radiology and laparoscopic lavage in an effort to avoid the morbidity and discomfort of a diverting colostomy. Based on a better understanding of the natural history of the disease, the indication to prophylactic colectomy after a few episodes of simple diverticulitis has been seriously challenged. For those patients who need a colectomy, single port laparoscopy, NOTES and transanal specimen extraction are being proposed. However larger studies are needed to confirm the hypothetical advantages of these evolving techniques.
Resumo:
Purified monoclonal antibodies (Mab) produced by 3 hybridomas and reacting with 3 different epitopes of carcinoembryonic antigen (CEA) were used in a solid phase enzyme immunoassay. Two Mabs were physically adsorbed to polystyrene balls and the third Mab was coupled to alkaline phosphatase using the bifunctional reagent N-succinimidyl-3-(2-pyridyldithio)-propionate. During a first incubation, CEA from heat-extracted serum samples was immunoadsorbed to the antibody coated balls. After washing of the balls, bound CEA was detected by a second incubation with the enzyme coupled Mab. The sensitivity of the assay was 0.6 ng per ml of serum. A total of 196 serum samples from patients with various types of carcinoma, with liver cirrhosis, or from healthy blood donors with or without smoking habits, were tested. The results obtained with the monoclonal enzyme immunoassay (M-EIA) were compared with those obtained with perchloric acid extracts of the same serum samples tested by an inhibition radioimmunoassay using conventional goat anti-CEA antiserum. There was an excellent correlation between the two assays. In particular, the new M-EIA gave good results for the detection of tumor recurrences in the follow-up of colon carcinoma patients. However, despite the use of exclusively monoclonal antibodies the new assay detected a similar percentage of slightly elevated CEA values as the conventional assay in patients with non-malignant disease, suggesting that the CEA associated with non-malignant diseases is immunologically identical to the CEA released by colon carcinoma.
Resumo:
The binding specificities of 52 well-characterized monoclonal antibodies (Mabs) against carcinoembryonic antigen (CEA) from 12 different research groups were studied by immunohistochemistry and immuno flow cytometry. In addition, the binding constant for the interaction between Mab and CEA was determined by a solution-phase assay. Cryostat sections of colon carcinoma and normal colon, stomach, liver, pancreas, and spleen were studied by immunohistochemistry. Peripheral blood granulocytes, monocytes, and lymphocytes were assayed by immuno flow cytometry. The Mabs used here have previously been classified into five essentially nonoverlapping epitope groups (GOLD 1-5) (Cancer Res., 49: 4852-4858, 1989). Most Mabs cross-reacted with different normal tissues, ranging from highly cross-reactive Mabs (positive reaction with 8 of 9 discriminating tissues) to relatively specific Mabs (positive reaction with 1 of 9 discriminating tissues). Five Mabs (10%) were specific, reacting only with colon carcinoma, normal colon mucosa, and normal gastric foveola. There was a correlation between epitope group and binding specificity. Mabs with a high degree of CEA specificity almost exclusively belonged to epitope groups 1, 2, and 3, while highly cross-reactive Mabs belonged to epitope groups 4 and 5. There was no correlation between antibody specificity and affinity for CEA. Specific Mabs with high as well as low affinity were found.
Resumo:
To avoid the exclusive use of rodent monoclonal antibodies (MAbs) in patients for the detection of tumors by immunoscintigraphy and for radioimmunotherapy, swine MAbs were produced that are directed against carcinoembryonic antigen (CEA). Spleen cells from 2 pigs immunized with purified colon carcinoma CEA were fused with a nonsecreting mouse myeloma cell line by conventional methods, except that a particularly long immunization protocol and large amounts of spleen and myeloma cells were used. Of 1,200 growing hybrids tested, 20 were found initially to produce antibodies binding to radiolabeled CEA. Seven stable clones producing anti-CEA MAbs for more than 6 months were derived from these hybrids by repeated subcloning. The pig origin of the seven MAbs was demonstrated in a solid-phase CEA enzyme immunoassay where anti-pig immunoglobin (Ig) antibodies coupled to peroxidase gave a positive reaction while anti-mouse Ig antibodies were entirely negative. All swine MAbs were of the IgG isotype. Three anti-CEA MAbs showed no cross-reactivity with granulocytes, while four others gave various degrees of reactivity with different granulocyte glycoproteins. Competitive binding to CEA performed for two purified swine MAbs showed that they recognized two different epitopes. The affinity constants measured for these two MAbs by Scatchard plot on purified CEA were high (1.2 X 10(9) and 1.2 X 10(10) liter/mol). One of the MAbs was tested in vivo for tumor localization by injection, after radiolabeling, in nude mice bearing human colon carcinoma xenograft. High ratios of tumor to normal tissue were obtained with mean values of 10.5 for intact MAbs and of 26.8 for F(ab')2 fragments of the porcine MAb. The results showed that heterofusion with this particular protocol can be used to produce swine MAbs of high affinity and specificity for a well-defined tumor marker. These reagents may have an important clinical utility, particularly in patients who became sensitized to mouse immunoglobulins.
Resumo:
Inflammatory bowel diseases are a result of an aberrant mucosal immune response to gut microflora. Several groups have reported newly diagnosed inflammatory bowel diseases following solid organ transplantation and subsequent immunosuppressive therapy. We describe four cases of newly diagnosed inflammatory bowel diseases following liver transplantation in a pool of 120 transplanted patients. These patients had no prior history of inflammatory bowel diseases or primary sclerosing cholangitis and were immunosuppressed. Two patients were transplanted for a hepatitis C related cirrhosis, one for alcoholic cirrhosis and one patient for autoimmune cirrhosis. Three patients were diagnosed with ulcerative colitis and one with Crohn's disease. These four patients were on a cyclosporin monotherapy when their inflammatory bowel diseases were diagnosed. These data suggest that cyclosporin monotherapy following solid organ transplantation does not prevent development of inflammatory bowel diseases.
Resumo:
Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.
Resumo:
BACKGROUND: Silver-Russell syndrome (SRS) is a genetically and clinically heterogeneous disease. Although no protein coding gene defects have been reported in SRS patients, approximately 50% of SRS patients carry epimutations (hypomethylation) at the IGF2/H19 imprinting control region 1 (ICR1). Proper methylation at ICR1 is crucial for the imprinted expression of IGF2, a fetal growth factor. CTCFL, a testis-specific protein, has recently been proposed to play a role in the establishment of DNA methylation at the murine equivalent of ICR1. A screen was undertaken to assess whether CTCFL is mutated in SRS patients with hypomethylation, to explore a link between the observed epimutations and a genetic cause of the disease. METHODOLOGY/PRINCIPAL FINDINGS: DNA was obtained from 36 SRS patients with hypomethylation at ICR1. All CTCFL coding exons were sequenced and analyzed for duplications/deletions using both multiplex ligation-dependent probe amplification, with a custom CTCFL probe set, and genomic qPCR. Novel SNP alleles were analyzed for potential differential splicing in vitro utilizing a splicing assay. Neither mutations of CTCFL nor duplications/deletions were observed. Five novel SNPs were identified and have been submitted to dbSNP. In silico splice prediction suggested one novel SNP, IVS2-66A>C, activated a cryptic splice site, resulting in aberrant splicing and premature termination. In vitro splicing assays did not confirm predicted aberrant splicing. CONCLUSIONS/SIGNIFICANCE: As no mutations were detected at CTCFL in the patients examined, we conclude that genetic alterations of CTCFL are not responsible for the SRS hypomethylation. We suggest that analysis of other genes involved in the establishment of DNA methylation at imprinted genes, such as DNMT3A and DNMT3L, may provide insight into the genetic cause of hypomethylation in SRS patients.
Resumo:
Telomerase activity has been detected in germ cells as well as in the developing embryo. Activity is no longer detectable in most somatic cells of the neonate, although low levels of activity persist in regenerative tissues. Telomerase has been found to be reactivated or up-regulated in the majority of cancers. The colorectal adenoma-carcinoma sequence is one of the best-characterized models of multistep tumourigenesis and is thus suitable for determining at which stage telomerase is activated. Telomerase activity was examined by telomeric repeat amplification protocol (TRAP) assay in 96 cases of colorectal tissues, including 50 carcinomas, 31 adenomas, and 15 normal colonic tissues. For each case, histological diagnosis and telomerase activity were determined on consecutive frozen sections. In order to reduce the chance of a false-negative TRAP assay due to RNA degradation, the integrity of rRNA in the tissues was verified in each case. Twenty-five carcinomas, 30 adenomas, and all of the 15 normal colorectal mucosal samples showed no or only partial rRNA degradation and only in these cases was the TRAP assay interpreted. None of the normal tissues exhibited telomerase activity. In contrast, all of the 25 cancers and 47 per cent (14/30) of the adenomas were positive. In adenomas, telomerase activation was highly significantly related to the grade of dysplasia (p< 0.0001). All adenomas which contained high-grade dysplasia revealed telomerase activity, whereas telomerase activity was detectable in only 20 per cent (4/20) of cases with exclusively low-grade dysplasia. These results indicate that telomerase activation, which may be an obligatory step in colorectal carcinogenesis, occurs in the progression from low-grade to high-grade dysplasia in adenomas. Furthermore, in the adenoma-carcinoma sequence, telomerase activation seems to occur later than K- ras mutation but earlier than p53 mutation.
Resumo:
Pooled F(ab')2 fragments of three MAbs against distinct epitopes of carcinoembryonic antigen (CEA) were used for radioimmunotherapy of nude mice bearing a subcutaneous human colon carcinoma xenograft. 9-10 d after transplantation when tumor nodules were in exponential growth, 36 mice were treated by intravenous injection of different amounts of 131I-labeled MAb F(ab')2. All 14 mice injected with a single dose of 2,200 (n = 10) or 2,800 microCi (n = 4) showed complete tumor remission. 8 of the 10 mice treated with 2,200 microCi survived in good health for 1 yr when they were killed and shown to be tumor free. Four of nine other mice treated with four fractionated doses of 400 microCi showed no tumor relapse for more than 9 mo. In contrast, all 15 mice injected with 1,600-3,000 microCi 131I-control IgG F(ab')2 showed tumor growth retardation of only 1-4 wk, and 15 of 16 mice injected with unlabeled anti-CEA MAb F(ab')2 showed unmodified tumor progression as compared with untreated mice. From tissue radioactivity distributions it was calculated that by an injection of 2,200 microCi 131I-MAb F(ab')2 a mean dose of 8,335 rad was selectively delivered to the tumor, while the tissue-absorbed radiation doses for the normal organs were: peripheral blood, 2,093; stomach, 1,668; kidney, 1,289; lung, 1,185; liver, 617; spleen, 501; small intestine, 427; large intestine, 367; bone, 337; and muscle, 198. These treatments were well tolerated since out of 19 mice with complete tumor remission only 4 required bone marrow transplantation and 17 were in good health for 6-12 mo of observation. The results demonstrate the selective destruction of established human colon carcinoma transplants by intravenous injection of either single or fractionated doses of 131I-MAb F(ab')2.
Resumo:
BACKGROUND: Visceral leishmaniasis is a parasitic disease associated with high mortality. The most important foci of visceral leishmaniasis in Ethiopia are in the Northwest and are predominantly associated with high rates of HIV co-infection. Co-infection of visceral leishmaniasis patients with HIV results in higher mortality, treatment failure and relapse. We have previously shown that arginase, an enzyme associated with immunosuppression, was increased in patients with visceral leishmaniasis and in HIV seropositive patients; further our results showed that high arginase activity is a marker of disease severity. Here, we tested the hypothesis that increased arginase activities associated with visceral leishmaniasis and HIV infections synergize in patients co-infected with both pathogens. METHODOLOGY/PRINCIPAL FINDINGS: We recruited a cohort of patients with visceral leishmaniasis and a cohort of patients with visceral leishmaniasis and HIV infection from Gondar, Northwest Ethiopia, and recorded and compared their clinical data. Further, we measured the levels of arginase activity in the blood of these patients and identified the phenotype of arginase-expressing cells. Our results show that CD4(+) T cell counts were significantly lower and the parasite load in the spleen was significantly higher in co-infected patients. Moreover, our results demonstrate that arginase activity was significantly higher in peripheral blood mononuclear cells and plasma of co-infected patients. Finally, we identified the cells-expressing arginase in the PBMCs as low-density granulocytes. CONCLUSION: Our results suggest that increased arginase might contribute to the poor disease outcome characteristic of patients with visceral leishmaniasis and HIV co-infection.
Resumo:
SUMMARYAs a result of evolution, humans are equipped with an intricate but very effective immune system with multiple defense mechanisms primarily providing protection from infections. This system comprises various cell types, including T-lymphocytes, which are able to recognize and directly kill infected cells. T-cells are not only able to recognize cells carrying foreign antigens, such as virus-infected cells, but also autologous cells. In autoimmune diseases, e.g. multiple sclerosis, T- cells attack autologous cells and cause the destruction of healthy tissue. To prevent aberrant immune reactions, but also to prevent damage caused by an overreacting immune response against foreign targets, there are multiple systems in place that attenuate T-cell responses.By contrast, anti-self immune responses may be highly welcome in malignant diseases. It has been demonstrated that activated T-cells are able to recognize and lyse tumor cells, and may even lead to successful cure of cancer patients. Through vaccination, and especially with the help of powerful adjuvants, frequencies of tumor-reactive T-cells can be augmented drastically. However, the efficacy of anti-tumor responses is diminished by the same checks and balances preventing the human body from harm induced by overly activated T-cells in infections.In the context of my thesis, we studied spontaneous and vaccination induced T-cell responses in melanoma patients. The aim of my studies was to identify situations of T-cell suppression, and pinpoint immune suppressive mechanisms triggered by malignant diseases. We applied recently developed techniques such as multiparameter flow cytometry and gene arrays, allowing the characterization of tumor-reactive T-cells directly ex vivo. In our project, we determined functional capabilities, protein expression, and gene expression profiles of small numbers of T- cells from metastatic tissue and blood obtained from healthy donors and melanoma patients. We found evidence that tumor-specific T-cells were functionally efficient effector cells in peripheral blood, but severely exhausted in metastatic tissue. Our molecular screening revealed the upregulation of multiple inhibitory receptors on tumor-specific T-cells, likely implied in T-cell exhaustion. Functional attenuation of tumor-specific T-cells via inhibitory receptors depended on the anatomical location and immune suppressive mechanisms in the tumor microenvironment, which appeared more important than self-tolerance and anergy mechanisms. Our data reveal novel potential targets for cancer therapy, and contribute to the understanding of cancer biology.RÉSUMÉAu cours de l'évolution, les êtres humains se sont vus doter d'un système immunitaire complexe mais très efficace, avec de multiples mécanismes de défense, principalement contre les infections. Ce système comprend différents types de cellules, dont les lymphocytes Τ qui sont capables de reconnaître et de tuer directement des cellules infectées. Les cellules Τ reconnaissent non seulement des cellules infectées par des virus, mais également des cellules autologues. Dans le cas de maladies auto-immunes, comme par exemple la sclérose en plaques, les cellules Τ s'attaquent à des cellules autologues, ce qui engendre la destruction des tissus sains. Il existe plusieurs systèmes de contrôle des réponses Τ afin de minimiser les réactions immunitaires aberrantes et d'empêcher les dégâts causés par une réponse immunitaire trop importante contre une cible étrangère.Dans le cas de maladies malignes en revanche, une réponse auto-immune peut être avantageuse. Il a été démontré que les lymphocytes Τ étaient également capables de reconnaître et de tuer des cellules tumorales, pouvant même mener à la guérison d'un patient cancéreux. La vaccination peut augmenter fortement la fréquence des cellules Τ réagissant contre une tumeur, particulièrement si elle est combinée avec des adjuvants puissants. Cependant, l'efficacité d'une réponse antitumorale est atténuée par ces mêmes mécanismes de contrôle qui protègent le corps humain des dégâts causés par des cellules Τ activées trop fortement pendant une infection.Dans le cadre de ma recherche de thèse, nous avons étudié les réponses Τ spontanées et induites par la vaccination dans des patients atteints du mélanome. Le but était d'identifier des conditions dans lesquelles les réponses des cellules Τ seraient atténuées, voire inhibées, et d'élucider les mécanismes de suppression immunitaire engendrés par le cancer. Par le biais de techniques nouvelles comprenant la cryométrie de flux et l'analyse globale de l'expression génique à partir d'un nombre minimal de cellules, il nous fut possible de caractériser des cellules Τ réactives contre des tumeurs directement ex vivo. Nous avons examiné les profiles d'expression de gènes et de protéines, ainsi que les capacités fonctionnelles des cellules Τ isolées à partir de tissus métastatiques et à partir du sang de patients. Nos résultats indiquent que les cellules Τ spécifiques aux antigènes tumoraux sont fonctionnelles dans le sang, mais qu'elles sont épuisées dans les tissus métastatiques. Nous avons découvert dans les cellules Τ antitumorales une augmentation de l'expression des récepteurs inhibiteurs probablement impliqués dans l'épuisement de ces lymphocytes T. Cette expression particulière de récepteurs inhibiteurs dépendrait donc de leur localisation anatomique et des mécanismes de suppression existant dans l'environnement immédiat de la tumeur. Nos données révèlent ainsi de nouvelles cibles potentielles pour l'immunothérapie du cancer et contribuent à la compréhension biologique du cancer.