861 resultados para Collision Scheme
Resumo:
[EN]This article presents the results obtained in the analysis of irregular microstrip structures using a full wave method of moments scheme. The irregular microstrip structures are divided into rectangular subdomains. The EFIE is discretized an solved over the subdomains using a Galerkin type scheme. Base and weight functions are piece wise sinusoidals (PWS) or triangular. Delta gap voltage generators are used as sources]. Green functions are computed using a freely available library developed by our research group. All the calculations are carried out in the so called ”spatial domain” so there is no need of using regular grids during the discretization process.
Resumo:
Il lavoro di tesi svolto riguarda lo sviluppo e la sperimentazione di un primo prototipo di sistema per l’obstacle detection e collision avoidance, capace di identificare un ostacolo e inibire i comandi del pilota in modo da evitare collisioni.
Resumo:
Résumé: Ce mémoire de maîtrise est une étude des probabilités d’interactions (sections efficaces) des électrons de basse énergie avec une molécule d’intérêt biologique. Cette molécule est le tétrahydrofurane (THF) qui est un bon modèle de la molécule constituant la colonne vertébrale de l’ADN; le désoxyribose. Étant donné la grande quantité d’électrons secondaires libérés lors du passage des radiations à travers la matière biologique et sachant que ceux-ci déposent la majorité de l’énergie, l’étude de leurs interactions avec les molécules constituant l’ADN devient rapidement d’une grande importance. Les mesures de sections efficaces sont faites à l’aide d’un spectromètre à haute résolution de pertes d’énergie de l’électron. Les spectres de pertes d’énergie de l’électron obtenus de cet appareil permettent de calculer les valeurs de sections efficaces pour chaque vibration en fonction de l’énergie incidente de l’électron. L’article présenté dans ce mémoire traite de ces mesures et des résultats. En effet, il présente et explique en détail les conditions expérimentales, il décrit la méthode de déconvolution qui est utilisée pour obtenir les valeurs de sections efficaces et il présente et discute des 4 résonances observées dans la dépendance en énergie des sections efficaces. En effet, cette étude a permis de localiser en énergie 4 résonances et celles-ci ont toutes été confirmées par des recherches expérimentales et théoriques antérieures sur le sujet des collisions électrons lents-THF. En outre, jamais ces résonances n’avaient été observées simultanément dans une même étude et jamais la résonance trouvée à basse énergie n’avait été observée avec autant d’intensité que cette présente étude. Cette étude a donc permis de raffiner notre compréhension fondamentale des processus résonants impliqués lors de collisions d’électrons secondaires avec le THF. Les valeurs de sections efficaces sont, quant à elles, très prisées par les théoriciens et sont nécessaires pour les simulations Monte Carlo pour prédire, par exemple, le nombre d’ions formées après le passage des radiations. Ces valeurs pourront justement être utilisées dans les modèles de distribution et dépôt d’énergie au niveau nanoscopique dans les milieux biologiques et ceux-ci pourront éventuellement améliorer l’efficacité des modalités radiothérapeutiques.
Resumo:
The next generation of vehicles will be equipped with automated Accident Warning Systems (AWSs) capable of warning neighbouring vehicles about hazards that might lead to accidents. The key enabling technology for these systems is the Vehicular Ad-hoc Networks (VANET) but the dynamics of such networks make the crucial timely delivery of warning messages challenging. While most previously attempted implementations have used broadcast-based data dissemination schemes, these do not cope well as data traffic load or network density increases. This problem of sending warning messages in a timely manner is addressed by employing a network coding technique in this thesis. The proposed NETwork COded DissEmination (NETCODE) is a VANET-based AWS responsible for generating and sending warnings to the vehicles on the road. NETCODE offers an XOR-based data dissemination scheme that sends multiple warning in a single transmission and therefore, reduces the total number of transmissions required to send the same number of warnings that broadcast schemes send. Hence, it reduces contention and collisions in the network improving the delivery time of the warnings. The first part of this research (Chapters 3 and 4) asserts that in order to build a warning system, it is needful to ascertain the system requirements, information to be exchanged, and protocols best suited for communication between vehicles. Therefore, a study of these factors along with a review of existing proposals identifying their strength and weakness is carried out. Then an analysis of existing broadcast-based warning is conducted which concludes that although this is the most straightforward scheme, loading can result an effective collapse, resulting in unacceptably long transmission delays. The second part of this research (Chapter 5) proposes the NETCODE design, including the main contribution of this thesis, a pair of encoding and decoding algorithms that makes the use of an XOR-based technique to reduce transmission overheads and thus allows warnings to get delivered in time. The final part of this research (Chapters 6--8) evaluates the performance of the proposed scheme as to how it reduces the number of transmissions in the network in response to growing data traffic load and network density and investigates its capacity to detect potential accidents. The evaluations use a custom-built simulator to model real-world scenarios such as city areas, junctions, roundabouts, motorways and so on. The study shows that the reduction in the number of transmissions helps reduce competition in the network significantly and this allows vehicles to deliver warning messages more rapidly to their neighbours. It also examines the relative performance of NETCODE when handling both sudden event-driven and longer-term periodic messages in diverse scenarios under stress caused by increasing numbers of vehicles and transmissions per vehicle. This work confirms the thesis' primary contention that XOR-based network coding provides a potential solution on which a more efficient AWS data dissemination scheme can be built.
Resumo:
"Report no. USCG/NTSB-MAR-75-6."
Resumo:
We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.
Resumo:
A prepayment scheme for health through the National Health Insurance Scheme (NHIS) was commenced in Nigeria about ten years ago. Nigeria operates a federal system of government. Sub- national levels possess a high degree of autonomy in a number of sectors including health. It is important to assess the level of coverage of the scheme among the formal sector workers in Nigeria as a proxy to gauge the extent of coverage of the scheme and derive suitable lessons that could be used in its expansion. This is a cross-sectional, descriptive survey carried out among formal sector workers in Ilorin Kwara State, Nigeria. A stratified sampling technique was used to select study participants. A self-administered questionnaire was used to collect data from respondents. Data was analysed with the SPSS. Ethical approval to conduct the study was obtained from the Bowen University Teaching Hospital Research Ethics Committee. A total of 370 people participated in the study. Majority, (78.9%) of the respondents were aware of the NHIS, however only 13.5 % paid for health care services through the NHIS. Logistic regression analysis shows that respondents with post-secondary education (OR = 9.032, CI = 2.562 – 31.847, p = 0.001) and in federal civil service (OR = 2.679, CI = 1.036 – 6.929, p = 0.042) were over nine and three times more likely to be aware of the scheme than others. Coverage of the scheme among the respondents was unimpressive. A lot still need to be done to fast-track the expansion of the scheme among this sector of the population.
Resumo:
Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.
Resumo:
This paper presents a high-accuracy fully analytical formulation to compute the miss distance and collision probability of two approaching objects following an impulsive collision avoidance maneuver. The formulation hinges on a linear relation between the applied impulse and the objects? relative motion in the b-plane, which allows one to formulate the maneuver optimization problem as an eigenvalue problem coupled to a simple nonlinear algebraic equation. The optimization criterion consists of minimizing the maneuver cost in terms of delta-V magnitude to either maximize collision miss distance or to minimize Gaussian collision probability. The algorithm, whose accuracy is verified in representative mission scenarios, can be employed for collision avoidance maneuver planning with reduced computational cost when compared with fully numerical algorithms.
Resumo:
As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system
Resumo:
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.
Resumo:
Building's construction activities, operation and demolition are increasingly recognised as a major source of environmental impact. One strategy for reducing such impacts is most widely known by the term Building Environmental Assessment (BEA). The research is an attempt to develop a new BEA scheme for residential buildings in Brunei which focussing on identifying BEA indicators that best suit for Brunei environment, social and economy. Studies show that Brunei residential sector needs urgent attention to transform its current consumption rate in more sustainable way. Recent launch of Brunei Green Building Council, mandatory energy efficiency guidelines and declaration of ambitious energy intensity reduction target, a new BEA scheme will help contribute sustainability target in residential sector. However the issues of developing a new BEA schemes using existing methods may face constraints in their effectiveness. In this regard, a consensus-forming technique-Delphi method-helps improve greater communication and gain consensus from experts in the construction industry through series of questionnaires. As a result, the final framework is produced comprises of 7 key categories and 37 applicable criteria that achieved high degree of consensus and importance.