864 resultados para Climate change law
Resumo:
Building resilience to climate change in agricultural production can ensure the functioning of agricultural-based livelihoods and reduce their vulnerability to climate change impacts. This paper thus explores how buffer capacity, a characteristic feature of resilience, can be conceptualised and used for assessing the resilience of smallholder agriculture to climate change. It uses the case of conservation agriculture farmers in a Kenyan region and examines how their practices contribute to buffer capacity. Surveys were used to collect data from 41 purposely selected conservation agriculture farmers in the Laikipia region of Kenya. Besides descriptive statistics, factor analysis was used to identify the key dimensions that characterise buffer capacity in the study context. The cluster of practices characterising buffer capacity in conservation agriculture include soil protection, adapted crops, intensification/irrigation, mechanisation and livelihood diversification. Various conservation practices increase buffer capacity, evaluated by farmers in economic, social, ecological and other dimensions. Through conservation agriculture, most farmers improved their productivity and incomes despite drought, improved their environment and social relations. Better-off farmers also reduced their need for labour, but this resulted in lesser income-earning opportunities for the poorer farmers, thus reducing the buffer capacity and resilience of the latter.
Resumo:
Experts working on behalf of international development organisations need better tools to assist land managers in developing countriesmaintain their livelihoods, as climate change puts pressure on the ecosystemservices that they depend upon. However, current understanding of livelihood vulnerability to climate change is based on a fractured and disparate set of theories andmethods. This reviewtherefore combines theoretical insights from sustainable livelihoods analysis with other analytical frameworks (including the ecosystem services framework, diffusion theory, social learning, adaptive management and transitions management) to assess the vulnerability of rural livelihoods to climate change. This integrated analytical framework helps diagnose vulnerability to climate change,whilst identifying and comparing adaptation options that could reduce vulnerability, following four broad steps: i) determine likely level of exposure to climate change, and how climate change might interact with existing stresses and other future drivers of change; ii) determine the sensitivity of stocks of capital assets and flows of ecosystem services to climate change; iii) identify factors influencing decisions to develop and/or adopt different adaptation strategies, based on innovation or the use/substitution of existing assets; and iv) identify and evaluate potential trade-offs between adaptation options. The paper concludes by identifying interdisciplinary research needs for assessing the vulnerability of livelihoods to climate change.
Resumo:
Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus general mechanisms
Resumo:
This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Resumo:
In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.
Resumo:
Besides its primary role in producing food and fiber, agriculture also has relevant effects on several other functions, such as management of renewable natural resources. Climate change (CC) may lead to new trade-offs between agricultural functions or aggravate existing ones, but suitable agricultural management may maintain or even improve the ability of agroecosystems to supply these functions. Hence, it is necessary to identify relevant drivers (e.g., cropping practices, local conditions) and their interactions, and how they affect agricultural functions in a changing climate. The goal of this study was to use a modeling framework to analyze the sensitivity of indicators of three important agricultural functions, namely crop yield (food and fiber production function), soil erosion (soil conservation function), and nutrient leaching (clean water provision function), to a wide range of agricultural practices for current and future climate conditions. In a two-step approach, cropping practices that explain high proportions of variance of the different indicators were first identified by an analysis of variance-based sensitivity analysis. Then, most suitable combinations of practices to achieve best performance with respect to each indicator were extracted, and trade-offs were analyzed. The procedure was applied to a region in western Switzerland, considering two different soil types to test the importance of local environmental constraints. Results show that the sensitivity of crop yield and soil erosion due to management is high, while nutrient leaching mostly depends on soil type. We found that the influence of most agricultural practices does not change significantly with CC; only irrigation becomes more relevant as a consequence of decreasing summer rainfall. Trade-offs were identified when focusing on best performances of each indicator separately, and these were amplified under CC. For adaptation to CC in the selected study region, conservation soil management and the use of cropped grasslands appear to be the most suitable options to avoid trade-offs.