964 resultados para Classical Mechanics
Resumo:
The importance and usefulness of renormalization are emphasized in non-relativistic quantum mechanics. The momentum space treatment of both two-body bound state and scattering problems involving some potentials singular at the origin exhibits ultraviolet divergence. The use of renormalization techniques in these problems leads to finite converged results for both the exact and perturbative solutions. The renormalization procedure is carried out for the quantum two-body problem in different partial waves for a minimal potential possessing only the threshold behaviour and no form factors. The renormalized perturbative and exact solutions for this problem are found to be consistent with each other. The useful role of the renormalization group equations for this problem is also pointed out.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
There is a four-parameter family of point interactions in one-dimensional quantum mechanics. They represent all possible self-adjoint extensions of the kinetic energy operator. If time-reversal invariance is imposed, the number of parameters is reduced to three. One of these point interactions is the familiar delta function potential but the other generalized ones do not seem to be widely known. We present a pedestrian approach to this subject and comment on a recent controversy in the literature concerning the so-called delta' interaction. We emphasize that there is little resemblance between the delta' interaction and what its name suggests.
Resumo:
Supersymmetric quantum mechanics can be used to obtain the spectrum and eigenstates of one-dimensional Hamiltonians. It is particularly useful when applied to partially solvable potentials because a superalgebra allows us to compute the spectrum state by state. Some solutions for the truncated Coulomb potential, an asymptotically linear potential, and a nonpolynomial potential are shown to exemplify the method.
Resumo:
Dynamical properties of the U-238-U-238 system at the classical turning point, specifically the distance of closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-Coulomb energy of E(lab) = 6.07 MeV/nucleon using a classical dynamical model with a variable moment of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found to be enhanced by about 16% in comparison with the results of a similar study using a fixed moment of inertia as well as the results from a semiquantal calculation reported earlier.
Resumo:
It is shown that the action functional S[g, phi] = integral d4 x square-root -g[R/k(1 + klambdaphi2) + partial derivative(mu)phi partial derivative(mu)phi] describes, in general, one and the same classical theory whatever may be the value of the coupling constant lambda.
Resumo:
There is still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) Underwent ascending aortic stenosis for 8 weeks (group AAS, n = 9). LV performance wits assessed by transthoracic echocardiography Under anesthesia. Myocardial function Was studied in isolated papillary muscle preparations during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, 11 = 9). LV weight-to-body weight ratio (C: 2.13 +/- 0.14 mg/g; AAS: 3.24 +/- 0.44) LV relative wall thickness (C: 0.18 +/- 0.02; AAS: 0.33 +/- 0.09), and LV fractional shortening (C: 54 +/- 5%; AAS: 70 +/- 8%) were increased in group AAS (P<0.05). Echocardio-graphic analysis also indicated a significant association (r = 0.74 P<0.001) between the percent fractional shortening index and LV relative wall thickness. The performance of AAS isolated In muscle revealed that active tension (C: 6.6 +/- 1.7 g/mm(2); AAS: 6.5 +/- 1.5 g/mm(2)) and maximum rate of tension development (C: 69 +/- 21 g/mm(2)/s AAS: 69 +/- 18 g/mm(2)/s) were not significantly different Front group C (P>0.05). In conclusion, compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance. The improved LV function might be due to the ventricular remodeling, characterized by an increased relative wall thickness.
Resumo:
The behavior of average velocities on a dissipative version of the classical bouncer model is described using scaling arguments. The description of the model is made by use of a two-dimensional nonlinear area contracting map. Our results reveal that the model experiences a transition from limited to unlimited energy growth as the dissipation vanishes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sudden eccentricity increases of asteroidal motion in 3/1 resonance with Jupiter were discovered and explained by J. Wisdom through the occurrence of jumps in the action corresponding to the critical angle (resonant combination of the mean motions). We pursue some aspects of this mechanism, which could be termed relaxation-chaos: that is, an unconventional form of homoclinic behavior arising in perturbed integrable Hamiltonian systems for which the KAM theorem hypothesis do not hold. © 1987.
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
The Birkhoff-Gustavson normal form is employed to study separately chaos and resonances in a system with two degrees of freedom. In the integrable regime, tunnelling effects are appreciable when the nearest level spacings show oscillations. Tunnelling among states in the libration and rotation tori regions is also observed. The regularity of avoided crossings due to tunnelling indicates a collective effect and is associated with an isolated resonance. The spectral fluctuations also show a strong level correlation. The Husimi distribution, on the other hand, is insensitive to avoided crossings. An integrable approximation to the overlap of resonances is obtained and a theoretical description is given for an isolated cubic resonance plus a complex orbit. In the non-integrable regime chaos is stronger after overlapping and preferentially at low energies.