875 resultados para Citrus black spot
Resumo:
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.
Resumo:
Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.
Resumo:
1 Insects using olfactory stimuli to forage for prey/hosts are proposed to encounter a ‘reliability–detectability problem’, where the usability of a stimulus depends on its reliability as an indicator of herbivore presence and its detectability. 2 We investigated this theory using the responses of female seven-spot ladybirds Coccinella septempunctata (Coleoptera: Coccinellidae) to plant headspace chemicals collected from the peach-potato aphid Myzus persicae and four commercially available Brassica cultivars; Brassica rapa L. cultivar ‘turnip purple top’, Brassica juncea L. cultivar ‘red giant mustard’, Brassica napus L. cultivar ‘Apex’, Brassica napus L. cultivar ‘Courage’ and Arabidopsis thaliana. For each cultivar/species, responses to plants that were undamaged, previously infested by M. persicae and infested with M. persicae, were investigated using dual-choice Petri dish bioassays and circular arenas. 3 There was no evidence that ladybirds responded to headspace chemicals from aphids alone. Ladybirds significantly preferred headspace chemicals from B. napus cv. Apex that were undamaged compared with those from plants infested with aphids. For the other four species/cultivars, there was a consistent trend of the predators being recorded more often in the half of the Petri dish containing plant headspace chemicals from previously damaged and infested plants compared with those from undamaged ones. Furthermore, the mean distance ladybirds walked to reach aphid-infested A. thaliana was significantly shorter than to reach undamaged plants. These results suggest that aphid-induced plant chemicals could act as an arrestment or possibly an attractant stimulus to C. septempunctata. However, it is also possible that C. septempunctata could have been responding to aphid products, such as honeydew, transferred to the previously damaged and infested plants. 4 The results provide evidence to support the ‘reliability–detectability’ theory and suggest that the effectiveness of C. septempunctata as a natural enemy of aphids may be strongly affected by which species and cultivar of Brassica are being grown.
Resumo:
The hypothesis that foraging male and female Coccinella septempunctata L. would exhibit a turning bias when walking along a branched linear wire in a Y-maze was tested. Individuals were placed repeatedly in the maze. Approximately 45% of all individuals tested displayed significant turning biases, with a similar number of individuals biased to the left and right. In the maze right-handed individuals turned right at 84.4% of turns and the left-handed individuals turned left at 80.2% of turns. A model of the searching efficiency of C. septempunctata in dichotomous branched environments showed that model coccinellids with greater turning biases discovered a higher proportion of the plant for a given number of searches than those with no bias. A modification of the model to investigate foraging efficiency, by calculating the mean time taken by individuals to find randomly distributed aphid patches, suggested that on four different sizes of plants, with a variety of aphid patch densities, implementing a turning bias was a significantly more efficient foraging strategy than no bias. In general the benefits to foraging of implementing a turning bias increased with the degree of the bias. It may be beneficial for individuals in highly complex branched environments to have a turning bias slightly lower than 100% in order to benefit from increased foraging efficiency without walking in circles. Foraging bias benefits increased with increasing plant size and decreasing aphid density. In comparisons of two different plant morphologies, one with a straight stem and side branches and one with a symmetrically branched morphology, there were few significant differences in the effects of turning biases on foraging efficiency between morphologies
Resumo:
High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64–55 and 40–32 ka BP, and two major humid phases ~54–45 and 28–20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard–Oeschger (D–O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.
Resumo:
This multiproxy study on SE Black Sea sediments provides the first detailed reconstruction of vegetation and environmental history of Northern Anatolia between 134 and 119 ka. Here, the glacial–interglacial transition is characterized by several short-lived alternating cold and warm events preceding a meltwater pulse (~ 130.4–131.7 ka). The latter is reconstructed as a cold arid period correlated to Heinrich event 11. The initial warming is evidenced at ~ 130.4 ka by increased primary productivity in the Black Sea, disappearance of ice-rafted detritus, and spreading of oaks in Anatolia. A Younger Dryas-type event is not identifiable. The Eemian vegetation succession corresponds to the main climatic phases in Europe: i) the Quercus–Juniperus phase (128.7–126.4 ka) indicates a dry continental climate; ii) the Ostrya–Corylus–Quercus–Carpinus phase (126.4–122.9 ka) suggests warm summers, mild winters, and high year-round precipitation; iii) the Fagus–Carpinus phase (122.9–119.5 ka) indicates cooling and high precipitation; and iv) increasing Pinus at ~ 121 ka marks the onset of cooler/drier conditions. Generally, pollen reconstructions suggest altitudinal/latitudinal migrations of vegetation belts in Northern Anatolia during the Eemian caused by increased transport of moisture. The evidence for the wide distribution of Fagus around the Black Sea contrasts with the European records and is likely related to climatic and genetic factors
Resumo:
In order to compare the sea-surface conditions in the Black Sea during the Holocene and Eemian, sapropelic parts of marine core 22-GC3 (42°13.53′N/36°29.55′E, 838 m water depth) were studied for organic-walled dinoflagellate cyst content. The record shows a change from freshwater/brackish assemblages (Pyxidinopsis psilata, Spiniferites cruciformis, and Caspidinium rugosum) to more marine assemblages (Lingulodinium machaerophorum and Spiniferites ramosus complex) during each interglacial, due to the inflow of saline Mediterranean water. The lacustrine–marine transitions in 22-GC3 occurred at ~ 8.3 cal kyr BP during the early Holocene and ~ 128 kyr BP during the early Eemian, slightly later compared to the onset of interglacial conditions on the adjacent land. Dinoflagellate cyst assemblages reveal higher sea-surface salinity (~ 28–30) (e.g. Spiniferites pachydermus, Bitectatodinium tepikiense, and Spiniferites mirabilis) around ~ 126.5–121 kyr BP in comparison to the Holocene (~ 15–20) as well as relatively high sea-surface temperature (e.g. Tuberculodinium vancampoae, S. pachydermus, and S. mirabilis) especially at ~ 127.6–125.3 kyr BP. Establishment of high sea-surface salinity during the Eemian correlates very well with reconstructed relatively high global sea-level and is explained as a combined effect of increased Mediterranean supply and high temperatures at the beginning of the last interglacial. The observed changes in the dinocyst record highlight the importance of nutrients for the composition of the Eemian and Holocene dinocyst assemblages.
Resumo:
We present results from experimental price-setting oligopolies in which green firms undertake different levels of energy-saving investments motivated by public subsidies and demand-side advantages. We find that consumers reveal higher willingness to pay for greener sellers’ products. This observation in conjunction to the fact that greener sellers set higher prices is compatible with the use and interpretation of energy-saving behaviour as a differentiation strategy. However, sellers do not exploit the resulting advantage through sufficiently high price-cost margins, because they seem trapped into “run to stay still” competition. Regarding the use of public subsidies to energy-saving sellers we uncover an undesirable crowding-out effect of consumers’ intrinsic tendency to support green manufacturers. Namely, consumers may be less willing to support a green seller whose energy-saving strategy yields a direct financial benefit. Finally, we disentangle two alternative motivations for consumer’s attractions to pro-social firms; first, the self-interested recognition of the firm’s contribution to the public and private welfare and, second, the need to compensate a firm for the cost entailed in each pro-social action. Our results show the prevalence of the former over the latter.
Resumo:
Families at the bottom end of the Edwardian white-collar income spectrum demonstrated middle-class status through observable consumption, at the cost of squeezing other expenditures, including ‘necessities’. This had negative economic impacts, lowering living standards due to inefficiently high budget shares for positional goods. Drawing on the work of Pierre Bourdieu, we examine how railway clerks sought to demonstrate ‘distinction’ from manual workers through certain conspicuous expenditures and how this strategy was progressively undermined by falling real incomes over the Edwardian period.
Resumo:
This study investigates the effects of temperature and pressure on inactivation of myrosinase extracted from black, brown and yellow mustard seeds. Brown mustard had higher myrosinase activity (2.75 un/mL) than black (1.50 un/mL) and yellow mustard (0.63 un/mL). The extent of enzyme inactivation increased with pressure (600-800 MPa) and temperature (30-70 °C) for all the mustard seeds. However, at combinations of lower pressures (200-400 MPa) and high temperatures (60-80 °C), there was less inactivation. For example, application of 300 MPa and 70 °C for 10 minutes retained 20%, 80% and 65% activity in yellow, black and brown mustard, respectively, whereas the corresponding activity retentions when applying only heat (70 °C, 10min) were 0%, 59% and 35%. Thus, application of moderate pressures (200-400 MPa) can potentially be used to retain myrosinase activity needed for subsequent glucosinolate hydrolysis.