952 resultados para Chebyshev polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work explores the suitability of the Lagrange interpolating polynomial as a tool to estimate and correct solar databases. From the knowledge of the irradiance distribution over a day, a portion of it was removed for applying Lagrange interpolation polynomial. After generation of the estimates by interpolation, the assessment was made by MBE and RMSE statistical indicators. The application of Lagrange interpolating generated the following results: underestimation of 0.27% (MBE = -1.83 W/m2) and scattering of 0.51% (RMSE = 3.48 W/m2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluated statistical equations estimates (based on radiometric fractions) of the hourly diffuse radiation incident on inclined surfaces for the North to 12.85, 22.85 and 32.85°, the climate and geographical conditions of Botucatu, SP. The database was generated from April/1998 to December/2007, with measures in the three tilted surfaces in different periods, but concomitant to the horizontal plane. In the validation of the equations were used indicative statistics MBE (mean absolute error), RMSE (square root mean square error) and index adjustment (d) for three inclinations and conditions of sky coverage. The increased angle of inclination of the surface led to increased scattering of hourly values for the coefficient of atmospheric transmissivity of diffuse radiation for inclined and horizontal surfaces. Estimates of diffuse radiation on the basis of hourly tilted horizontal global radiation occur for quadratic polynomial models, which adjust K'Dβ maximum values of between 0.14 and 0.30 for winter and summer when KTH varies between 0.40 and 0.66, indicating that energy, the highest values of diffuse radiation occur in partly cloudy sky conditions and / or partially open. The increase in atmospheric transmissivity decreases the performance of annual and monthly equations at all inclinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic conferencing refers to a scenario wherein any subset of users in a universe of users form a conference for sharing confidential information among themselves. The key distribution (KD) problem in dynamic conferencing is to compute a shared secret key for such a dynamically formed conference. In literature, the KD schemes for dynamic conferencing either are computationally unscalable or require communication among users, which is undesirable. The extended symmetric polynomial based dynamic conferencing scheme (ESPDCS) is one such KD scheme which has a high computational complexity that is universe size dependent. In this paper we present an enhancement to the ESPDCS scheme to develop a KD scheme called universe-independent SPDCS (UI-SPDCS) such that its complexity is independent of the universe size. However, the UI-SPDCS scheme does not scale with the conference size. We propose a relatively scalable KD scheme termed as DH-SPDCS that uses the UI-SPDCS scheme and the tree-based group Diffie- Hellman (TGDH) key exchange protocol. The proposed DH-SPDCS scheme provides a configurable trade-off between computation and communication complexity of the scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let (R,m) be a local complete intersection, that is, a local ring whose m-adic completion is the quotient of a complete regular local ring by a regular sequence. Let M and N be finitely generated R-modules. This dissertation concerns the vanishing of Tor(M, N) and Ext(M, N). In this context, M satisfies Serre's condition (S_{n}) if and only if M is an nth syzygy. The complexity of M is the least nonnegative integer r such that the nth Betti number of M is bounded by a polynomial of degree r-1 for all sufficiently large n. We use this notion of Serre's condition and complexity to study the vanishing of Tor_{i}(M, N). In particular, building on results of C. Huneke, D. Jorgensen and R. Wiegand [32], and H. Dao [21], we obtain new results showing that good depth properties on the R-modules M, N and MtensorN force the vanishing of Tor_{i}(M, N) for all i>0. We give examples showing that our results are sharp. We also show that if R is a one-dimensional domain and M and MtensorHom(M,R) are torsion-free, then M is free if and only if M has complexity at most one. If R is a hypersurface and Ext^{i}(M, N) has finite length for all i>>0, then the Herbrand difference [18] is defined as length(Ext^{2n}(M, N))-(Ext^{2n-1}(M, N)) for some (equivalently, every) sufficiently large integer n. In joint work with Hailong Dao, we generalize and study the Herbrand difference. Using the Grothendieck group of finitely generated R-modules, we also examined the number of consecutive vanishing of Ext^{i}(M, N) needed to ensure that Ext^{i}(M, N) = 0 for all i>>0. Our results recover and improve on most of the known bounds in the literature, especially when R has dimension two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.