939 resultados para Cape Town
Resumo:
Doctorado en Ciencias Físicas. Programa de Oceanografía y Física aplicada.
Resumo:
[EN] Filaments are narrow, shallow structures of cool water originating from the coast. They are typical features of the four main eastern boundary upwelling systems (EBUS). In spite of their significant biological and chemical roles, through the offshore exportation of nutrient-rich waters, the physical processes that generate them are still not completely understood. This paper is a process-oriented study of filament generation mechanisms. Our goal is twofold: firstly, to obtain a numerical solution able to well represent the characteristics of the filament off Cape Ghir (30°38'N, northwestern Africa) in the Canary EBUS and secondly, to explain its formation by a simple mechanism based on the balance of potential vorticity. The first goal is achieved by the use of the ROMS model (Regional Ocean Modeling System) in embedded domains around Cape Ghir, with a horizontal resolution going up to 1.5 km for the finest domain. The latter gets its initial and boundary conditions from a parent solution and is forced by climatological, high-resolution atmospheric fields. The modeled filaments display spatial, temporal and physical characteristics in agreement with the available in situ and satellite observations. This model solution is used as a reference to compare the results with a set of process-oriented experiments. These experiments allow us to reach the second objective. Their respective solution serves to highlight the contribution of various processes in the filament generation. Since the study is focused on general processes present under climatological forcing conditions, inter-annual forcing is not necessary. The underlying idea for the filament generation is the balance of potential vorticity in the Canary EBUS: the upwelling jet is characterized by negative relative vorticity and flows southward along a narrow band of uniform potential vorticity. In the vicinity of the cape, an injection of relative vorticity induced by the wind breaks the existing vorticity balance. The upwelling jet is prevented from continuing its way southward and has to turn offshore to follow lines of equal potential vorticity. The model results highlight the essential role of wind, associated with the particular topography (coastline and bottom) around the cape. The mechanism presented here is general and thus can be applied to other EBUS.
Resumo:
Universidad de Las Palmas de Gran Canaria. Facultad de Ciencias del Mar. Programa de doctorado en Oceanografía. Diploma de Estudios Avanzados
Resumo:
[EN]The Cape Verde Frontal Zone separates North and South Atlantic Central Waters in the eastern North Atlantic Subtropical Gyre. CTD-O2 and shipboard ADCP data from three hydrographic sections carried out in September 2003 are used to study the structure of the front. Results show the relation between spatial variations of water masses and currents, demonstrating the importance of advection in the distribution of water masses. Diapycnal diffusivities due to double diffusion and vertical shear instabilities are also estimated. Existence of competition between the two processes through the water column is shown. Depth-averaged diffusivities suggest that salt fingering dominates diapycnal mixing, except areas of purest South Atlantic Central Water. Here, double diffusion processes are weak and, consequently, shear of the flow is the main process. Results also show that strong mixing induced by vertical shear is associated with a large intrusion found near the front.
Resumo:
Recent demographic changes have made settlement patterns in the Canadian Arctic increasingly urban. Iqaluit, capital of Canada’s newest territory, Nunavut, is home to the largest concentration of Inuit and non-Inuit populations in the Canadian North. Despite these trends, Inuit cultural identity continues to rest heavily on the perception that to learn how to be authentically Inuit (or to be a better person), a person needs to spend time out on the land (and sea) hunting, fishing, trapping, and camping. Many Inuit also maintain a rather negative view of urban spaces in the Arctic, identifying them as places where Inuit values and practices have been eclipsed by Qallunaat (‘‘white people’’) ones. Some Inuit have even gone so far as to claim that a person is no longer able to be Inuit while living in towns like Iqaluit. This article examines those aspects of Canadian Inuit identity, culture, and tradition that disfavor the acceptance of an urban cultural identity. Based on ethnographic research conducted on Baffin Island in the mid 1990s and early 2000s, the many ways Iqaluit and outpost camp Inuit express the differences and similarities between living on the land and living in town are described. Then follows an examination of how the contrast of land and town is used in the rhetoric of Inuit politicians and leaders. Finally, a series of counterexamples are presented that favor the creation of an authentic urban Inuit identity in the Arctic, including recent attempts on the part of the Nunavut Territorial Government to make education and wage employment in the region more reliant on Inuit Qaujimajatuqangit, or Inuit traditional knowledge.1