908 resultados para Capability Maturity Model for Software
Resumo:
Acknowledgements: Funding for this project was provided from the Research Council of Norway through the Petromaks project 193059 and the FORCE Safari Project. Arild Andresen (University of Oslo) and Aka Lynge (POLOG) are thanked for logistical support, Björn Nyberg (Uni Research CIPR and University of Bergen) for assistance in the field, Arve Næss (Statoil) for providing data and assistance during the planning phase, Julien Vallet and Huges Fournier (Helimap Systems SA) for data acquisition. Riegl LMS GmbH is acknowledged for software support. We thank Brian Willis and an anonymous reviewer for their insightful and thorough reviews and Mariano Marzo for editorial comments.
Resumo:
The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.
Resumo:
Software development guidelines are a set of rules which can help improve the quality of software. These rules are defined on the basis of experience gained by the software development community over time. This paper discusses a set of design guidelines for model-based development of complex real-time embedded software systems. To be precise, we propose nine design conventions, three design patterns and thirteen antipatterns for developing UML-RT models. These guidelines have been identified based on our analysis of around 100 UML-RT models from industry and academia. Most of the guidelines are explained with the help of examples, and standard templates from the current state of the art are used for documenting the design rules.
Resumo:
Drawing on the organizational capabilities literature, the authors developed and tested a model of how supportive human resource management (HRM) improved firms’ financial performance perceived by marketing managers through fostering the implementation of a customer-oriented strategy. Customer-linking capability, which is the capability in managing close customer relationships, indicated the implementation of the customer-oriented strategy. Data collected from two emerging economies – China and Hungary –established that supportive HRM partially mediated the relationship between customer-oriented strategy and customer-linking capability. Customer-linking capability further explained how supportive HRM contributed to perceived financial performance. This study explicates the implication of customer-oriented strategy for HRM and reveals the
importance of HRM in strategy implementation. It also sheds some light on the ‘black box’ between HRM and performance. While making important contributions to the field of strategy, HRM and marketing, this study also offers useful practical implications.
Resumo:
This paper examines the integration of a tolerance design process within the Computer-Aided Design (CAD) environment having identified the potential to create an intelligent Digital Mock-Up [1]. The tolerancing process is complex in nature and as such reliance on Computer-Aided Tolerancing (CAT) software and domain experts can create a disconnect between the design and manufacturing disciplines It is necessary to implement the tolerance design procedure at the earliest opportunity to integrate both disciplines and to reduce workload in tolerance analysis and allocation at critical stages in product development when production is imminent.
The work seeks to develop a methodology that will allow for a preliminary tolerance allocation procedure within CAD. An approach to tolerance allocation based on sensitivity analysis is implemented on a simple assembly to review its contribution to an intelligent DMU. The procedure is developed using Python scripting for CATIA V5, with analysis results aligning with those in literature. A review of its implementation and requirements is presented.
Resumo:
The agent-based social simulation component of the TELL ME project (WP4) developed prototype software to assist communications planners to understand the complex relationships between communication, personal protective behaviour and epidemic spread. Using the simulation, planners can enter different potential communications plans, and see their simulated effect on attitudes, behaviour and the consequent effect on an influenza epidemic.
The model and the software to run the model are both freely available (see section 2.2.1 for instructions on how to obtain the relevant files). This report provides the documentation for the prototype software. The major component is the user guide (Section 2). This provides instructions on how to set up the software, some training scenarios to become familiar with the model operation and use, and details about the model controls and output.
The model contains many parameters. Default values and their source are described at Section 3. These are unlikely to be suitable for all countries, and may also need to be changed as new research is conducted. Instructions for how to customise these values are also included (see section 3.5).
The final technical reference contains two parts. The first is a guide for advanced users who wish to run multiple simulations and analyse the results (section 4.1). The second is to orient programmers who wish to adapt or extend the simulation model (section 4.2). This material is not suitable for general users.
Resumo:
Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process, also demands that the turbulence model selected be robust and numerically stable with short simulation times.
In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open CFD test case, the centrifugal compressor ‘Radiver’, to compare the results of three eddy viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were (i) Spalart-Allmaras (SA) model, (ii) the Shear Stress Transport (SST) model, (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the off-design conditions, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global and local flow features.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.
Resumo:
Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street Pollution Model (OSPMr). To assess the predictive validity of the model, the data is split into an estimation and a prediction data set using two data splitting approaches and data preparation techniques (clustering and outlier detection) are analysed. The sensitivity analysis, being part of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to succesfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach applied for the uncertainty calculations underestimated the parameter uncertainties. The model parameter uncertainty was qualitatively assessed to be significant, and reduction strategies were identified.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Nell'elaborato, dopo una breve descrizione di come vengono suddivise le macchine elettriche a seconda che vi siano o meno parti in movimento al loro interno, vengono esaminati inizialmente gli aspetti teorici che riguardano le macchine sincrone a poli lisci ed a poli salienti prendendo in esame anche quelli che sono i provvedimenti necessari a ridurre il contributo dei campi armonici di ordine superiore. Per questo tipo di macchine, spesso utilizzate in centrale per la pruduzione dell'energia elettrica, risultano di fondamentale importanza le curve a "V" e le curve di "Capability". Esse sono strumenti che permettono di valutare le prestazioni di tali macchine una volta che siano noti i dati di targa delle stesse. Lo scopo della tesi è pertanto quello di sviluppare un software in ambiente Matlab che permetta il calcolo automatico e parametrico di tali curve al fine di poter ottimizzare la scelta di una macchina a seconda delle esigenze. Nel corso dell'eleaborato vengono altresì proposti dei confronti su come varino tali curve, e pertanto i limiti di funzionamento ad esse associati, al variare di alcuni parametri fondamentali come il fattore di potenza, la reattanza sincrona o, nel caso di macchine a poli salienti, il rapporto di riluttanza. Le curve di cui sopra sono state costruite a partire da considerazioni fatte sul diagramma di Behn-Eschemburg per le macchine isotrope o sul diagramma di Arnold e Blondel per le macchine anisotrope.
Resumo:
Some authors have shown the need of understanding the technological structuring process in contemporary firms. From this perspective, the software industry is a very important element because it provides products and services directly to many organizations from many fields. In this case, the Brazilian software industry has some peculiarities that distinguish it from other industries located in developed countries, which makes its understanding even more relevant. There is evidence that local firms take different strategies and structural configurations to enter into a market naturally dominated by large multinational firms. Therefore, this study aims to understand not only the structural configurations assumed by domestic firms but also the dynamic and the process that lead to these different configurations. To do so, this PhD dissertation investigates the institutional environment, its entities and the isomorphic movements, by employing an exploratory, descriptive and explanatory multiple cases study. Eight software development companies from the Recife's information technology Cluster were visited. Also, a form was applied and an interview with one of the main firm s professional was conducted. Although the study is predominantly qualitative, part of the data was analyzed through charts and graphs, providing a companies and environment overview that was very useful to analysis done through the interviews interpretation. As a result, it was realized that companies are structured around hybrids business models from two ideal types of software development companies, which are: software factory and technology-based company. Regarding the development process, it was found that there is a balanced distribution between the traditional and agile development paradigm. Among the traditional methodologies, the Rational Unified Process (RUP) is predominant. The Scrum is the most used methodology among the organizations based on the Agile Manifesto's principles. Regarding the structuring process, each institutional entity acts in such way that generates different isomorphic pressure. Emphasis was given to entities such as customers, research agencies, clusters, market-leading businesses, public universities, incubators, software industry organizations, technology vendors, development tool suppliers and manager s school and background because they relate themselves in a close way with the software firms. About this relationship, a dual and bilateral influence was found. Finally, the structuring level of the organizational field has been also identified as low, which gives a chance to organizational actors of acting independently
Resumo:
The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.
Resumo:
This work provides a holistic investigation into the realm of feature modeling within software product lines. The work presented identifies limitations and challenges within the current feature modeling approaches. Those limitations include, but not limited to, the dearth of satisfactory cognitive presentation, inconveniency in scalable systems, inflexibility in adapting changes, nonexistence of predictability of models behavior, as well as the lack of probabilistic quantification of model’s implications and decision support for reasoning under uncertainty. The work in this thesis addresses these challenges by proposing a series of solutions. The first solution is the construction of a Bayesian Belief Feature Model, which is a novel modeling approach capable of quantifying the uncertainty measures in model parameters by a means of incorporating probabilistic modeling with a conventional modeling approach. The Bayesian Belief feature model presents a new enhanced feature modeling approach in terms of truth quantification and visual expressiveness. The second solution takes into consideration the unclear support for the reasoning under the uncertainty process, and the challenging constraint satisfaction problem in software product lines. This has been done through the development of a mathematical reasoner, which was designed to satisfy the model constraints by considering probability weight for all involved parameters and quantify the actual implications of the problem constraints. The developed Uncertain Constraint Satisfaction Problem approach has been tested and validated through a set of designated experiments. Profoundly stating, the main contributions of this thesis include the following: • Develop a framework for probabilistic graphical modeling to build the purported Bayesian belief feature model. • Extend the model to enhance visual expressiveness throughout the integration of colour degree variation; in which the colour varies with respect to the predefined probabilistic weights. • Enhance the constraints satisfaction problem by the uncertainty measuring of the parameters truth assumption. • Validate the developed approach against different experimental settings to determine its functionality and performance.