898 resultados para CRANIOFACIAL DEFORMITIES
Resumo:
BACKGROUND Severe femoral head deformities in the frontal plane such as hips with Legg-Calvé-Perthes disease (LCPD) are not contained by the acetabulum and result in hinged abduction and impingement. These rare deformities cannot be addressed by resection, which would endanger head vascularity. Femoral head reduction osteotomy allows for reshaping of the femoral head with the goal of improving head sphericity, containment, and hip function. QUESTIONS/PURPOSES Among hips with severe asphericity of the femoral head, does femoral head reduction osteotomy result in (1) improved head sphericity and containment; (2) pain relief and improved hip function; and (3) subsequent reoperations or complications? METHODS Over a 10-year period, we performed femoral head reduction osteotomies in 11 patients (11 hips) with severe head asphericities resulting from LCPD (10 hips) or disturbance of epiphyseal perfusion after conservative treatment of developmental dysplasia (one hip). Five of 11 hips had concomitant acetabular containment surgery including two triple osteotomies, two periacetabular osteotomies (PAOs), and one Colonna procedure. Patients were reviewed at a mean of 5 years (range, 1-10 years), and none was lost to followup. Mean patient age at the time of head reduction osteotomy was 13 years (range, 7-23 years). We obtained the sphericity index (defined as the ratio of the minor to the major axis of the ellipse drawn to best fit the femoral head articular surface on conventional anteroposterior pelvic radiographs) to assess head sphericity. Containment was assessed evaluating the proportion of patients with an intact Shenton's line, the extrusion index, and the lateral center-edge (LCE) angle. Merle d'Aubigné-Postel score and range of motion (flexion, internal/external rotation in 90° of flexion) were assessed to measure pain and function. Complications and reoperations were identified by chart review. RESULTS At latest followup, femoral head sphericity (72%; range, 64%-81% preoperatively versus 85%; range, 73%-96% postoperatively; p = 0.004), extrusion index (47%; range, 25%-60% versus 20%; range, 3%-58%; p = 0.006), and LCE angle (1°; range, -10° to 16° versus 26°; range, 4°-40°; p = 0.0064) were improved compared with preoperatively. With the limited number of hips available, the proportion of an intact Shenton's line (64% versus 100%; p = 0.087) and the overall Merle d'Aubigné-Postel score (14.5; range, 12-16 versus 15.7; range, 12-18; p = 0.072) remained unchanged at latest followup. The Merle d'Aubigné-Postel pain subscore improved (3.5; range, 1-5 versus 5.0; range, 3-6; p = 0.026). Range of motion was not observed to have improved with the numbers available (p ranging from 0.513 to 0.778). In addition to hardware removal in two hips, subsequent surgery was performed in five of 11 hips to improve containment after a mean interval of 2.3 years (range, 0.2-7.5 years). Of those, two hips had triple osteotomy, one hip a combined triple and valgus intertrochanteric osteotomy, one hip an intertrochanteric varus osteotomy, and one hip a PAO with a separate valgus intertrochanteric osteotomy. No avascular necrosis of the femoral head occurred. CONCLUSIONS Femoral head reduction osteotomy can improve femoral head sphericity. Improved head containment in these hips with an often dysplastic acetabulum requires additional acetabular containment surgery, ideally performed concomitantly. This can result in reduced pain and avascular necrosis seems to be rare. With the number of patients available, function did not improve. Therefore, future studies should use more precise instruments to evaluate clinical outcome and include longer followup to confirm joint preservation. LEVEL OF EVIDENCE Level IV, therapeutic study.
Resumo:
In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely "fast", "intermediate", and "slow". Most cleft lip/palate fibroblasts were distributed between the "fast" (5 strains) and the "intermediate" group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the "fast" group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the "intermediate" migratory group to the level of the "fast", but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of "fast" cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling.
Resumo:
Due to its proximal correction site and long lever arm, the Lapidus fusion, modified or not, is a powerful technique to correct hallux valgus deformities. The disadvantages are a high complication rate and a long postoperative rehabilitation period. It is only performed in 5% to 10% of all hallux valgus deformity corrections but remains, however, an important procedure, especially in moderate to severe deformities with intermetatarsal angles more than 14°, hypermobility of the first ray, arthritis of the first tarsometatarsal joint, and recurrent deformities. This article provides an overview of the procedure with special focus on the surgical technique.
Callus massage after distraction osteogenesis using the concept of lengthening then dynamic plating.
Resumo:
Correction of complex deformities is a challenging procedure. Long-term wearing of a fixator after correction and lengthening are inconvenient and has a high rate of complication. The goals of the surgical treatment in the presented case were: (1) correction of the deformity and lengthening of the left leg by the Taylor spatial frame (TSF, Smith and Nephew, Marl, Germany); (2) reduction in the time the patient wears the TSF by changing the fixation system to a plate (lengthening then plating-LTP) and using a locking compression plate in conjunction with the 5.0 dynamic locking screws in order to accelerate bone healing.
Resumo:
OBJECTIVE Proximal femoral osteotomy with stable fixation and sufficient correction. Low complication rates due to exact preoperative planning. INDICATIONS Congenital or traumatic femoral neck pseudarthrosis. Coxa vara. CONTRAINDICATIONS None. In severe deformities, a single femoral osteotomy may not solve the problem; thus, additional correction, e.g., a pelvic osteotomy, is required. SURGICAL TECHNIQUE Correct planning of the correction angle. Lateral approach. Subperiosteal detachment of vastus lateralis muscle. Place guide wire on the femoral neck to judge anteversion. Insert positioning wire 5 mm distal to trochanteric physis. Insert 2.8 mm Kirschner wire in the femoral neck. Osteotomy of the femur after marking the rotation by Kirschner wires or oscillating saw. Slide LC plate over Kirschner wires. Replace Kirschner wires with screws. Reduction of the femoral shaft to the plate with bone forceps. Definitive fixation of the plate to the femoral shaft by cortex or locking screws. Readaptation of vastus lateralis muscle over the plate. POSTOPERATIVE MANAGEMENT Partial weightbearing for 4-6 weeks depending on the age of the patient without any external fixation (e. g. cast) is possible. RESULTS Recent studies support the authors' findings of sufficient correction and stable fixation after proximal femoral osteotomy with the LCP pediatric hip plate. Low complication rates and stable fixation.
Resumo:
OBJECTIVE Correction of all kind of deformities at the distal part of the femur (supracondylar). INDICATIONS Flexion, extension osteotomies, and varus or valgus, and external or internal rotation osteotomies, and shortening osteotomies of the distal femur or combined surgical procedures (e.g., extension and de-rotation osteotomy). CONTRAINDICATIONS Osteotomy through unknown bony process. SURGICAL TECHNIQUE LCP system provides angular stable fixation. POSTOPERATIVE MANAGEMENT Without concomitant surgical procedures of soft tissue (e.g., patellar tendon shortening), early functional rehabilitation is possible with immediate weight bearing (35 kg for small fragment plates and 70 kg for large fragment plates). RESULTS The surgical procedure is safe and is associated with few complications. Overall complication rate in this series of patients was 3%.
Resumo:
INTRODUCTION Distraction-based spinal growth modulation by growing rods or vertical expandable prosthetic titanium ribs (VEPTRs) is the mainstay of instrumented operative strategies to correct early onset spinal deformities. In order to objectify the benefits, it has become common sense to measure the gain in spine height by assessing T1-S1 distance on anteroposterior (AP) radiographs. However, by ignoring growth changes on vertebral levels and by limiting measurement to one plane, valuable data is missed regarding the three-dimensional (3D) effects of growth modulation. This information might be interesting when it comes to final fusion or, even more so, when the protective growing implants are removed and the spine re-exposed to physiologic forces at the end of growth. METHODS The goal of this retrospective radiographic study was to assess the growth modulating impact of year-long, distraction-based VEPTR treatment on the morphology of single vertebral bodies. We digitally measured lumbar vertebral body height (VBH) and upper endplate depth (VBD) at the time of the index procedure and at follow-up in nine patients with rib-to-ileum constructs (G1) spanning an anatomically normal lumbar spine. Nine patients with congenital thoracic scoliosis and VEPTR rib-to-rib constructs, but uninstrumented lumbar spines, served as controls (G2). All had undergone more than eight half-yearly VEPTR expansions. A Wilcoxon signed-rank test was used for statistical comparison of initial and follow-up VBH, VBD and height/depth (H/D) ratio (significance level 0.05). RESULTS The average age was 7.1 years (G1) and 5.2 year (G2, p > 0.05) at initial surgery; the average overall follow-up time was 5.5 years (p = 1). In both groups, VBH increased significantly without a significant intergroup difference. Group 1 did not show significant growth in depth, whereas VBD increased significantly in the control group. As a consequence, the H/D ratio increased significantly in group 1 whereas it remained unchanged in group 2. The growth rate for height in mm/year was 1.4 (group 1) and 1.1 (group 2, p = 0.45), and for depth, it was -0.3 and 1.1 (p < 0.05), respectively. CONCLUSIONS VEPTR growth modulating treatment alters the geometry of vertebral bodies by increasing the H/D ratio. We hypothesize that the implant-related deprivation from axial loads (stress-shielding) impairs anteroposterior growth. The biomechanical consequence of such slender vertebrae when exposed to unprotected loads in case of definitive VEPTR removal at the end of growth is uncertain.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
Resumo:
Current techniques for three-dimensional correction of the chin in patients with mandibular retrusion may increase mentolabial fold depth, but have limited effect on the lips. The authors present a single surgical technique to support the mentolabial fold and improve labial competence. The visor osteotomy is performed from canine to canine. The bone fragment pedicled to the lingual periosteum is coronally mobilized and fixed in the new position. Preserved vascularization is supposed to minimize the amount of bone resorbed. Visor osteotomy of the anterior mandible may improve the existing treatments for micrognathia by creating an aesthetic mentolabial fold and a competent lip seal.
Resumo:
Placement of a single-tooth implant should be performed when a patient's facial growth has ceased. In this retrospective observational study, we evaluated if there was a difference in the timing of cessation of craniofacial growth in short, average, and long facial types. Based on the value of the angle between cranial base and mandibular plane (SN/MP angle), three groups comprising 48 subjects with short facial type (SF; SN/MP ≤28°), 77 with average facial type (AF; SN/MP ≥31.5° and ≤34.5°), and 44 with long facial type (LF; SN/MP ≥38°) were selected. Facial growth was assessed on lateral cephalograms taken at 15.4 years of age, and 2, 5, and 10 years later. Variables were considered to be stable when the difference between two successive measurements was less than 1 mm or 1°. We found no difference between facial types in the timing of cessation of facial growth. Depending on the variable, the mean age when variables became stable ranged from 18.0 years (Is-Pal in LF group) to 22.0 years (SN/MP in LF group). However, facial growth continued at the last follow-up in approximately 20% subjects. This study demonstrates that facial type is not associated with the timing of cessation of facial growth.
Resumo:
AIM To systematically search the literature and assess the available evidence for the influence of chin-cup therapy on the temporomandibular joint regarding morphological adaptations and appearance of temporomandibular disorders (TMD). MATERIALS AND METHODS Electronic database searches of published and unpublished literature were performed. The following electronic databases with no language and publication date restrictions were searched: MEDLINE (via Ovid and PubMed), EMBASE (via Ovid), the Cochrane Oral Health Group's Trials Register, and CENTRAL. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, and Pro-Quest Dissertation Abstracts and Thesis database. The reference lists of all eligible studies were checked for additional studies. Two review authors performed data extraction independently and in duplicate using data collection forms. Disagreements were resolved by discussion or the involvement of an arbiter. RESULTS From the 209 articles identified, 55 papers were considered eligible for inclusion in the review. Following the full text reading stage, 12 studies qualified for the final review analysis. No randomized clinical trial was identified. Eight of the included studies were of prospective and four of retrospective design. All studies were assessed for their quality and graded eventually from low to medium level of evidence. Based on the reported evidence, chin-cup therapy affects the condylar growth pattern, even though two studies reported no significance changes in disc position and arthrosis configuration. Concerning the incidence of TMD, it can be concluded from the available evidence that chin-cup therapy constitutes no risk factor for TMD. CONCLUSION Based on the available evidence, chin-cup therapy for Class III orthodontic anomaly seems to induce craniofacial adaptations. Nevertheless, there are insufficient or low-quality data in the orthodontic literature to allow the formulation of clear statements regarding the influence of chin-cup treatment on the temporomandibular joint.
Resumo:
OBJECTIVES The aim of this Short Communication was to present a workflow for the superimposition of intraoral scan (IOS), cone-beam computed tomography (CBCT), and extraoral face scan (EOS) creating a 3D virtual dental patient. MATERIAL AND METHODS As a proof-of-principle, full arch IOS, preoperative CBCT, and mimic EOS were taken and superimposed to a unique 3D data pool. The connecting link between the different files was to detect existing teeth as constant landmarks in all three data sets. RESULTS This novel application technique successfully demonstrated the feasibility of building a craniofacial virtual model by image fusion of IOS, CBCT, and EOS under 3D static conditions. CONCLUSIONS The presented application is the first approach that realized the fusion of intraoral and facial surfaces combined with skeletal anatomy imaging. This novel 3D superimposition technique allowed the simulation of treatment planning, the exploration of the patients' expectations, and the implementation as an effective communication tool. The next step will be the development of a real-time 4D virtual patient in motion.
Resumo:
AIM To analyse meta-analyses included in systematic reviews (SRs) published in leading orthodontic journals and the Cochrane Database of Systematic Reviews (CDSR) focusing on orthodontic literature and to assess the quality of the existing evidence. MATERIALS AND METHODS Electronic searching was undertaken to identify SRs published in five major orthodontic journals and the CDSR between January 2000 and June 2014. Quality assessment of the overall body of evidence from meta-analyses was conducted using the Grading of Recommendations Assessment, Development and Evaluation working group (GRADE) tool. RESULTS One hundred and fifty-seven SRs were identified; meta-analysis was present in 43 of these (27.4 per cent). The highest proportion of SRs that included a meta-analysis was found in Orthodontics and Craniofacial Research (6/13; 46.1 per cent), followed by the CDSR (12/33; 36.4 per cent) and the American Journal of Orthodontics and Dentofacial Orthopaedics (15/44; 34.1 per cent). Class II treatment was the most commonly addressed topic within SRs in orthodontics (n = 18/157; 11.5 per cent). The number of trials combined to produce a summary estimate was small for most meta-analyses with a median of 4 (range: 2-52). Only 21 per cent (n = 9) of included meta-analyses were considered to have a high/moderate quality of evidence according to GRADE, while the majority were of low or very low quality (n = 34; 79.0 per cent). CONCLUSIONS Overall, approximately one quarter of orthodontic SRs included quantitative synthesis, with a median of four trials per meta-analysis. The overall quality of evidence from the selected orthodontic SRs was predominantly low to very low indicating the relative lack of high quality of evidence from SRs to inform clinical practice guidelines.
Resumo:
Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities, and subdivided in TRPS I, caused by mutations in TRPS1, and TRPS II, caused by a contiguous gene deletion affecting (amongst others) TRPS1 and EXT1. We performed a collaborative international study to delineate phenotype, natural history, variability, and genotype-phenotype correlations in more detail. We gathered information on 103 cytogenetically or molecularly confirmed affected individuals. TRPS I was present in 85 individuals (22 missense mutations, 62 other mutations), TRPS II in 14, and in 5 it remained uncertain whether TRPS1 was partially or completely deleted. Main features defining the facial phenotype include fine and sparse hair, thick and broad eyebrows, especially the medial portion, a broad nasal ridge and tip, underdeveloped nasal alae, and a broad columella. The facial manifestations in patients with TRPS I and TRPS II do not show a significant difference. In the limbs the main findings are short hands and feet, hypermobility, and a tendency for isolated metacarpals and metatarsals to be shortened. Nails of fingers and toes are typically thin and dystrophic. The radiological hallmark are the cone-shaped epiphyses and in TRPS II multiple exostoses. Osteopenia is common in both, as is reduced linear growth, both prenatally and postnatally. Variability for all findings, also within a single family, can be marked. Morbidity mostly concerns joint problems, manifesting in increased or decreased mobility, pain and in a minority an increased fracture rate. The hips can be markedly affected at a (very) young age. Intellectual disability is uncommon in TRPS I and, if present, usually mild. In TRPS II intellectual disability is present in most but not all, and again typically mild to moderate in severity. Missense mutations are located exclusively in exon 6 and 7 of TRPS1. Other mutations are located anywhere in exons 4-7. Whole gene deletions are common but have variable breakpoints. Most of the phenotype in patients with TRPS II is explained by the deletion of TRPS1 and EXT1, but haploinsufficiency of RAD21 is also likely to contribute. Genotype-phenotype studies showed that mutations located in exon 6 may have somewhat more pronounced facial characteristics and more marked shortening of hands and feet compared to mutations located elsewhere in TRPS1, but numbers are too small to allow firm conclusions.
Resumo:
Orthodontic tooth movement requires external orthodontic forces to be converted to cellular signals that result in the coordinated removal of bone on one side of the tooth (compression side) by osteoclasts, and the formation of new bone by osteoblasts on the other side (tension side). The length of orthodontic treatment can take several years, leading to problems of caries, periodontal disease, root resorption, and patient dissatisfaction. It appears that the velocity of tooth movement is largely dependent on the rate of alveolar bone remodeling. Pharmacological approaches to increase the rate of tooth movement are limited due to patient discomfort, severe root resorption, and drug-induced side effects. Recently, externally applied, cyclical, low magnitude forces (CLMF) have been shown to cause an increase in the bone mineral density of long bones, and in the growth of craniofacial structures in a variety of animal models. In addition, CLMF is well tolerated by the patient and produces no known adverse effects. However, its application in orthodontic tooth movement has not been specifically determined. Since factors that increase alveolar bone remodeling enhance the rate of orthodontic tooth movement, we hypothesized that externally applied, cyclical, low magnitude forces (CLMF) will increase the rate of orthodontic tooth movement. In order to test this hypothesis we used an in vivo rat orthodontic tooth movement model. Our specific aims were: Specific Aim 1: To develop an in vivo rat model for tooth movement. We developed a tooth movement model based upon two established rodent models (Ren and Yoshimatsu et al, See Figure 1.). The amount of variation of tooth movement in rats exposed to 25-60 g of mesial force activated viii from the first molar to the incisor for 4 weeks was calculated. Specific Aim 2: To determine the frequency dose response of externally applied, cyclical, low magnitude forces (CLMF) for maximal tooth movement and osteoclast numbers. Our working hypothesis for this aim was that the amount of tooth movement would be dose dependent on the frequency of application of the CLMF. In order to test this working hypothesis, we varied the frequency of the CLMF from 30, 60, 100, and 200 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks, and measured the amount of tooth movement. We also looked at the number of osteoclasts for the different frequencies; we hypothesized an increase in osteoclasts for the dose respnse of different frequencies. Specific Aim 3: To determine the effects of externally applied, cyclical, low magnitude forces (CLMF) on PDL proliferation. Our working hypothesis for this aim was that PDL proliferation would increase with CLMF. In order to test this hypothesis we compared CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) performed on the left side (experimental side), to the non-CLMF side, on the right (control side). This was an experimental study with 24 rats in total. The experimental group contained fifteen (15) rats in total, and they all received a spring plus a different frequency of CLMF. Three (3) received a spring and CLMF at 30 Hz, 0.4N for 10 minutes. Six (6) received a spring and CLMF at 60 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 100 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 200 Hz, 0.4N for 10 minutes. The control group contained six (6) rats, and received only a spring. An additional ix three (3) rats received CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) only, with no spring, and were used only for histological purposes. Rats were subjected to the application of orthodontic force from their maxillary left first molar to their left central incisor. In addition some of the rats received externally applied, cyclical, low magnitude force (CLMF) on their maxillary left first molar. micro-CT was used to measure the amount of orthodontic tooth movement. The distance between the maxillary first and second molars, at the most mesial point of the second molar and the most distal point of the first molar (1M-2M distance) were used to evaluate the distance of tooth movement. Immunohistochemistry was performed with TRAP staining and BrdU quantification. Externally applied, cyclical, low magnitude forces (CLMF) do appear to have an effect on the rate, while not significant, of orthodontic tooth movement in rats. It appears that lower CLMF decreases the rate of tooth movement, while higher CLMF increases the rate of tooth movement. Future studies with larger sample sizes are needed to clarify this issue. CLMF does not appear to affect the proliferation in PDL cells, and has no effect on the number of osteoclasts.