993 resultados para CALIFORNIA
Resumo:
The oxygen isotope record of the planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma from Pliocene and early Pleistocene sediments at both DSDP site 173 and the Centerville Beach section in California suggests a large influx of isotopically light water in this area during late Pliocene and early Pleistocene time. Salinity may have been reduced by as much as 2 to 4 ?. Surface sea water paleotemperatures for the lower Pliocene range from 9.5°C to 15.5°C. The oxygen isotope record of the benthonic genus Uvigerina shows little variation indicating environmental stability at depth. At DSDP site 173 the small variation in Uvigerina is due to variation in the oxygen isotopic composition of the oceans as glaciers waxed and waned. At the Centerville Beach section the oxygen isotopic composition of Uvigerina reflects the gradual shoaling of the Humboldt Basin. Carbon and oxygen isotope ratios in G. bulloides and N. pachyderma are inversely correlated at the 95% confidence level. This may indicate that the oxygen and carbon isotopic composition of foraminifera are influenced by the same factors. On the other hand, the inverse correlation may be due to metabolic fractionation. No correlation was found between oxygen and carbon isotopic composition in Uvigerina.
Seawater carbonate chemistry and benthic foraminiferal assemblage counts from the Gulf of California
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
A high-resolution, accelerator radiocarbon dated climate record of the interval 8,000-18,000 years B.P. from Deep Sea Drilling Project site 480 (Guaymas Basin, Gulf of California) shows geochemical and lithological oscillations of oceanographic and climatic significance during deglaciation. Nonlaminated sediments are associated with cooler climatic conditions during the late glacial (up to 13,000 years B.P.), and from 10,300 to 10,800 years B.P., equivalent to the Younger Dryas event of the North Atlantic region. We propose that the changes from laminated (varved) to nonlaminated sediments resulted from increased oxygen content in Pacific intermediate waters during the glacial and the Younger Dryas episodes, and that the forcing for the latter event was global in scope. Prominent events of low delta18O are recorded in benthic foraminifera from 8,000 to 10,000 and at 12,000 years B.P.; evidence for an earlier event between 13,500 and 15,000 years B.P. is weaker. Maximum delta18O is found to have occurred 10,500, 13,500, and 15,000 years ago (and beyond). Oxygen isotopic variability most likely reflects changing temperature and salinity characteristics of Pacific waters of intermediate depth during deglaciation or environmental changes within the Gulf of California region. Several lines of evidence suggest that during deglaciation the climate of the American southwest was marked by increased precipitation that could have lowered salinity in the Gulf of California. Recent modelling studies show that cooling of the Gulf of Mexico due to glacial meltwater injection, which is believed to have occurred at least twice during deglaciation, would have resulted in increased precipitation with respect to evaporation in the American southwest during summertime. The timing of deglacial events in the Gulf of Mexico and the Gulf of California supports such an atmospheric teleconnection.