926 resultados para C Nuclear Magnetic Resonance
Resumo:
OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.
Resumo:
OBJECTIVE: To propose an automatic brain tumor segmentation system. METHODS: The system used texture characteristics as its main source of information for segmentation. RESULTS: The mean correct match was 94% of correspondence between the segmented areas and ground truth. CONCLUSION: Final results showed that the proposed system was able to find and delimit tumor areas without requiring any user interaction.
Resumo:
Magnetic resonance imaging (MRI) is today precluded to patients bearing active implantable medical devices AIMDs). The great advantages related to this diagnostic modality, together with the increasing number of people benefiting from implantable devices, in particular pacemakers(PM)and carioverter/defibrillators (ICD), is prompting the scientific community the study the possibility to extend MRI also to implanted patients. The MRI induced specific absorption rate (SAR) and the consequent heating of biological tissues is one of the major concerns that makes patients bearing metallic structures contraindicated for MRI scans. To date, both in-vivo and in-vitro studies have demonstrated the potentially dangerous temperature increase caused by the radiofrequency (RF) field generated during MRI procedures in the tissues surrounding thin metallic implants. On the other side, the technical evolution of MRI scanners and of AIMDs together with published data on the lack of adverse events have reopened the interest in this field and suggest that, under given conditions, MRI can be safely performed also in implanted patients. With a better understanding of the hazards of performing MRI scans on implanted patients as well as the development of MRI safe devices, we may soon enter an era where the ability of this imaging modality may be more widely used to assist in the appropriate diagnosis of patients with devices. In this study both experimental measures and numerical analysis were performed. Aim of the study is to systematically investigate the effects of the MRI RF filed on implantable devices and to identify the elements that play a major role in the induced heating. Furthermore, we aimed at developing a realistic numerical model able to simulate the interactions between an RF coil for MRI and biological tissues implanted with a PM, and to predict the induced SAR as a function of the particular path of the PM lead. The methods developed and validated during the PhD program led to the design of an experimental framework for the accurate measure of PM lead heating induced by MRI systems. In addition, numerical models based on Finite-Differences Time-Domain (FDTD) simulations were validated to obtain a general tool for investigating the large number of parameters and factors involved in this complex phenomenon. The results obtained demonstrated that the MRI induced heating on metallic implants is a real risk that represents a contraindication in extending MRI scans also to patient bearing a PM, an ICD, or other thin metallic objects. On the other side, both experimental data and numerical results show that, under particular conditions, MRI procedures might be consider reasonably safe also for an implanted patient. The complexity and the large number of variables involved, make difficult to define a unique set of such conditions: when the benefits of a MRI investigation cannot be obtained using other imaging techniques, the possibility to perform the scan should not be immediately excluded, but some considerations are always needed.
Resumo:
Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.
Resumo:
Vinylphosphonic acid (VPA) was polymerized at 80 ºC by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 104 g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, 13C-NMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the 1H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change.
Resumo:
Zusammenfassung Nanokomposite aus Polymeren und Schichtsilikaten werden zumeist auf der Basis natürlicher Tone wie Montmorillonit hergestellt. Für NMR- und EPR-Untersuchungen der Tensidschicht, die das Silikat mit dem Polymer kompatibilisiert, ist der Eisengehalt natürlicher Tone jedoch abträglich, weil er zu einer Verkürzung der Relaxationszeiten und zu einer Linienverbreiterung in den Spektren führt. Dieses Problem konnte überwunden werden, indem als Silikatkomponente eisenfreies, strukturell wohldefiniertes Magadiit hydrothermal synthetisiert und für die Kompositbildung eingesetzt wurde. Die Morphologie des Magadiits wurde durch Rasterelektronenmikroskopie charakterisiert und der Interkalationsgrad von schmelzinterkalierten Polymer-Nanokompositen wurde durch Weitwinkelröntgenstreuung bestimmt. Polymere mit Carbonylgruppen scheinen leichter zu interkalieren als solche ohne Carbonylgruppen. Polycaprolacton interkalierte sowohl in Oragnomagadiite auf der Basis von Ammoniumtensiden als auch in solche auf der Basis von Phosphoniumtensiden. Die Dynamik auf einer Nanosekundenzeitskala und die Struktur der Tensidschicht wurden mittels ortsspezifisch spinmarkierter Tensidsonden unter Nutzung von Dauerstrich- (CW) und Puls-Methoden der elektronenparamagnetischen Resonanzspektroskopie (EPR) untersucht. Zusätzlich wurde die statische 2H-Kernmagnetresonanz (NMR) an spezifisch deuterierten Tensiden angewendet, um die Tensiddynamik auf einer komplementären Zeitskala zwischen Mikrosekunden und Millisekunden zu erfassen. Sowohl die CW-EPR- als auch die 2H-NMR-Ergebnisse zeigen eine Beschleunigung der Tensiddynamik durch Interkalation von Polycaprolacton auf, während sich in den nichtinterkalierten Mikrokompositen mit Polystyrol die Tensiddynamik verlangsamt. Die Rotationskorrelationszeiten und Aktivierungsenergien offenbaren verschiedene Regime der Tensiddynamik. In Polystyrol-Mikrokompositen entspricht die Übergangstemperatur zwischen den Regimen der Glasübergangstemperatur von Polystyrol, während sie in Polycaprolacton-Nanokompositen bei der Schmelztemperatur von Polycaprolacton liegt. Durch die erhebliche Verlängerung der Elektronenspin-Relaxationszeiten bei Verwendung von eisenfreiem Magadiit können Messdaten hoher Qualität mit Puls-EPR-Experimenten erhalten werden. Insebsondere wurden die Vier-Puls-Elektron-Elektron-Doppelresonanz (DEER), die Elektronenspinechoenveloppenmodulation (ESEEM) und die Elektronen-Kern-Doppelresonanz (ENDOR) an spinmarkierten sowie spezifisch deuterierten Tensiden angewandt. Die ENDOR-Ergebnisse legen ein Model der Tensidschicht nahe, in dem zusätzlich zu den Oberflächenlagen auf dem Silikat eine wohldefinierte mittlere Lage existiert. Dieses Modell erklärt auch Verdünnungseffekte durch das Polymer in Kompositen mit Polycaprolacton und Polystyrol. Die umfangreiche Information aus den Magnetresonanztechniken ergänzt die Information aus konventionellen Charakterisierungstechniken wie Röntgendiffraktion und Transmissionselektronenmikroskopie und führt so zu einem detaillierteren Bild der Struktur und Dynamik der Tensidschicht in Nanokompositen aus Polymeren und Schichtsilikaten.
Resumo:
Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.
Resumo:
Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.
Resumo:
This study focuses on the use of metabonomics applications in measuring fish freshness in various biological species and in evaluating how they are stored. This metabonomic approach is innovative and is based upon molecular profiling through nuclear magnetic resonance (NMR). On one hand, the aim is to ascertain if a type of fish has maintained, within certain limits, its sensory and nutritional characteristics after being caught; and on the second, the research observes the alterations in the product’s composition. The spectroscopic data obtained through experimental nuclear magnetic resonance, 1H-NMR, of the molecular profiles of the fish extracts are compared with those obtained on the same samples through analytical and conventional methods now in practice. These second methods are used to obtain chemical indices of freshness through biochemical and microbial degradation of the proteic nitrogen compounds and not (trimethylamine, N-(CH3)3, nucleotides, amino acids, etc.). At a later time, a principal components analysis (PCA) and a linear discriminant analysis (PLS-DA) are performed through a metabonomic approach to condense the temporal evolution of freshness into a single parameter. In particular, the first principal component (PC1) under both storage conditions (4 °C and 0 °C) represents the component together with the molecular composition of the samples (through 1H-NMR spectrum) evolving during storage with a very high variance. The results of this study give scientific evidence supporting the objective elements evaluating the freshness of fish products showing those which can be labeled “fresh fish.”
Resumo:
Die Kernmagnetresonanz (NMR) ist eine vielseitige Technik, die auf spin-tragende Kerne angewiesen ist. Seit ihrer Entdeckung ist die Kernmagnetresonanz zu einem unverzichtbaren Werkzeug in unzähligen Anwendungen der Physik, Chemie, Biologie und Medizin geworden. Das größte Problem der NMR ist ihre geringe Sensitivtät auf Grund der sehr kleinen Energieaufspaltung bei Raumtemperatur. Für Protonenspins, die das größte magnetogyrische Verhältnis besitzen, ist der Polarisationsgrad selbst in den größten verfügbaren Magnetfeldern (24 T) nur ~7*10^(-5).rnDurch die geringe inhärente Polarisation ist folglich eine theoretische Sensitivitätssteigerung von mehr als 10^4 möglich. rnIn dieser Arbeit wurden verschiedene technische Aspekte und unterschiedliche Polarisationsagenzien für Dynamic Nuclear Polarization (DNP) untersucht.rnDie technische Entwicklung des mobilen Aufbaus umfasst die Verwendung eines neuen Halbach Magneten, die Konstruktion neuer Probenköpfe und den automatisierten Ablauf der Experimente mittels eines LabVIEW basierten Programms. Desweiteren wurden zwei neue Polarisationsagenzien mit besonderen Merkmalen für den Overhauser und den Tieftemperatur DNP getestet. Zusätzlich konnte die Durchführbarkeit von NMR Experimenten an Heterokernen (19F und 13C) im mobilen Aufbau bei 0,35 T gezeigt werden. Diese Ergebnisse zeigen die Möglichkeiten der Polarisationstechnik DNP auf, wenn Heterokerne mit einem kleinen magnetogyrischen Verhältnis polarisiert werden müssen.rnDie Sensitivitätssteigerung sollte viele neue Anwendungen, speziell in der Medizin, ermöglichen.
Resumo:
Gleno-humeral joint (GHJ) is the most mobile joint of the human body. This is related to theincongr uence between the large humeral head articulating with the much smaller glenoid (ratio 3:1). The GHJ laxity is the ability of the humeral head to be passively translated on the glenoid fossa and, when physiological, it guarantees the normal range of motion of the joint. Three-dimensional GHJ linear displacements have been measured, both in vivo and in vitro by means of different instrumental techniques. In vivo gleno-humeral displacements have been assessed by means of stereophotogrammetry, electromagnetic tracking sensors, and bio-imaging techniques. Both stereophotogrammetric systems and electromagnetic tracking devices, due to the deformation of the soft tissues surrounding the bones, are not capable to accurately assess small displacements, such as gleno-humeral joint translations. The bio-imaging techniques can ensure for an accurate joint kinematic (linear and angular displacement) description, but, due to the radiation exposure, most of these techniques, such as computer tomography or fluoroscopy, are invasive for patients. Among the bioimaging techniques, an alternative which could provide an acceptable level of accuracy and that is innocuous for patients is represented by magnetic resonance imaging (MRI). Unfortunately, only few studies have been conducted for three-dimensional analysis and very limited data is available in situations where preset loads are being applied. The general aim of this doctoral thesis is to develop a non-invasive methodology based on open-MRI for in-vivo evaluation of the gleno-humeral translation components in healthy subjects under the application of external loads.
Resumo:
A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1H, the most widely used nucleus in NMR andrnMRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones.Here, I describe a method giving rise to high 1H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences.rnrnHyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization.These two achievements open up alternative opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.
Resumo:
Patients with GH deficiency (GHD) are insulin resistant with an increase in visceral fat mass (FM). Whether this holds true when sedentary control subjects (CS) are matched for waist has not been documented. GH replacement therapy (GHRT) results in a decrease in FM. Whether the decrease in FM is mainly related to a reduction in visceral FM remains to be proven. The aim was to separately assess visceral and subcutaneous FM in relation to insulin resistance (IR) in GHD patients before and after GHRT and in sedentary CS.