961 resultados para Brake fluids.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10. nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3. s and the detection limit of ammonia solution, 1. ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study theoretically the hydrodynamics of a fluid drop containing oriented filaments endowed with active contractile or extensile stresses and placed on a solid surface. The active stresses alter qualitatively the wetting properties of the drop, leading to new spreading laws and novel static drop shapes. Candidate systems for testing our predictions include cytoskeletal extracts with motors and ATP, suspensions of bacteria or pulsatile cells, or fluids laden with artificial self-propelled colloids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the motion of a ferromagnetic helical nanostructure under the action of a rotating magnetic field. A variety of dynamical configurations were observed that depended strongly on the direction of magnetization and the geometrical parameters, which were also confirmed by a theoretical model, based on the dynamics of a rigid body under Stokes flow. Although motion at low Reynolds numbers is typically deterministic, under certain experimental conditions the nanostructures showed a surprising bistable behavior, such that the dynamics switched randomly between two configurations, possibly induced by thermal fluctuations. The experimental observations and the theoretical results presented in this paper are general enough to be applicable to any system of ellipsoidal symmetry under external force or torque.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ternary solubilities of solid isomers of nitrobenzoic acid (NBA) were experimentally determined at 308, 318 and 328K over a pressure range of 12-18 MPa in supercritical carbon dioxide (SCCO2). Compared to its binary solubility, the ternary solubilities of m-NBA increased at 308 K while it decreased at 328 K. However, the ternary solubilities of p-NBA increased at all temperatures and pressures except at 13 MPa and 328K. A new model was developed by applying solution model and activity coefficient model for the ternary solubilities of pharmaceutical and non-pharmaceutical solid mixtures in terms of temperature, density and cosolute composition. The model equation involves four temperature independent constraint-free parameters. The model equation correlates the ternary solubilities of seven pharmaceutical solid mixtures along with current data with an average AARD around 9.5% and sixteen non-pharmaceutical solid mixtures with 9% AARD. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present measurements of the stress as a function of vertical position in a column of granular material sheared in a cylindrical Couette device. All three components of the stress tensor on the outer cylinder were measured as a function of distance from the free surface at shear rates low enough that the material was in the dense, slow flow regime. We find that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. We argue that the anomalous stress profile is due to an anisotropic fabric caused by the combined action of gravity and shear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three indicators of isentropic lines, namely, the isentropic index, the ratio of pressure and density p/rho and the derivative (partial derivative p/partial derivative rho)s are investigated for all of the fluids in the RefProp 9.0 program. The behaviour of these three entities is evaluated along the saturated vapour line as well as in the superheated vapour region. There is a distinct demarcation of fluids whose isentropic indices can be less than 1 and others for which this behaviour is absent. The critical molar volume is found to be the characterizing feature. Several other interesting features of those three thermodynamic properties are also highlighted. It is observed that most practical engineering compression and expansion processes occur along the decreasing direction of the sound speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermo Acoustic Prime Movers (TAPMs) are being considered as the ideal choice for driving the Pulse Tube Cryocoolers replacing the conventional compressors. The advantages are the absence of moving components and they can be driven by low grade energy as such as fuel, gas, solar energy, waste heat etc. While the development of such TAPMs is in progress in our laboratory, their design and fabrication should be guided by numerical modeling and this may be done by several methods such as solving the energy equation 1], enthalpy flow model 2], CFD 3], etc. We have used CFD technique, since it provides a better insight into the velocity and temperature profiles. The analysis is carried out by varying parameters such as (a) temperature difference across the stack, (b) stack and resonator lengths and (c) different working fluids such as air, nitrogen, argon etc. The theoretical results are compared with the experimental data wherever possible and they are in reasonably good agreement with each other. The analysis indicate that (i) larger temperature difference across the stack leads to increased acoustic amplitude, (ii) longer resonator leads to decrease in frequency with lesser amplitude and (iii) there exists an optimal stack length for the best performance of TAPM. These results are presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with an experimental study of the breakup characteristics of water emanating from hollow cone hydraulic injector nozzles induced by pressure-swirling. The experiments were conducted using two nozzles with different orifice diameters 0.3 mm and 0.5 mm and injection pressures (0.3-4 MPa) which correspond to Rep = 7000-26 000. Two types of laser diagnostic techniques were utilized: shadowgraph and phase Doppler particle anemometry for a complete study of the atomization process. Measurements that were made in the spray in both axial and radial directions indicate that both velocity and average droplet diameter profiles are highly dependent on the nozzle characteristics, Weber number and Reynolds number. The spatial variation of diameter and velocity arises principally due to primary breakup of liquid films and subsequent secondary breakup of large droplets due to aerodynamic shear. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant. Different types of liquid film breakup were considered and found to match well with the theory. Secondary breakup due to shear was also studied theoretically and compared to the experimental data. Coalescence probability at different axial and radial locations was computed to explain the experimental results. The spray is subdivided into three zones: near the nozzle, a zone consisting of film and ligament regime, where primary breakup and some secondary breakup take place; a second zone where the secondary breakup process continues, but weakens, and the centrifugal dispersion becomes dominant; and a third zone away from the spray where coalescence is dominant. Each regime has been analyzed in detail, characterized by timescale and Weber number and validated using experimental data. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4773065]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equilibrium quaternary solubilities of dihydroxybenzene (resorcinol + pyrocatechol + hydroquinone + SCCO2) isomers were experimentally determined at 308, 318 and 328K over a pressure range of 9.8-15.7 MPa by using a saturation method. The effects of temperature, pressure and the components on each other have been thoroughly investigated. The selectivity of SCCO2 for ternary (resorcinol + pyrocatechol + SCCO2) and quaternary systems was discussed. A new model equation for quaternary solubilities of solids has been developed by accounting for non-idealities by combining the solution model with Wilson activity coefficient model. The model equation has five adjustable parameters and correlates the quaternary solubilities of current data along with two other quaternary data reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the study of a submerged jet for the suction of unwanted fluid. This submerged jet is caused by the fluid coming out from a source. The presence of a sink in front of this source facilitates the suction of the fluid depending upon the source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of the source and sink. The main purpose is the determination of the sink flow rate for 100% removal of the source fluid as a function of these parameters. The experiments have been carried using a source nozzle 6 mm in diameter and two sizes for the sink pipe diameter: 10 mm and 20 mm. The main diagnostics used are flow visualization using dye and particle image velocimetry (PIV). The dependence of the required suction flow rate to obtain 100% effectiveness on the suction tube diameter and angle is relatively weak compared to the lateral separation. DOI: 10.1115/1.4007266]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A conventional liner with a good performance against inorganic contaminants with a minimal hydraulic conductivity does not usually perform well for retention/removal of leachates containing organic contaminants. Organic modification of clay can render the naturally organophobic clay tobe organophilic. Incorporation of modified organo clay along with unmodified inorganic clay in liner systems can overcome the inherent incompatibility of conventional liners to organic contaminants and can increase organic sorption. The performance of commercially available organo clay and natural bentonite and mixtures of them in different pore fluids has been studied. It is found that the properties of mixtures improve with increase in organically modified clay particularly in non aqueous fluids from the considerations of liner application.