948 resultados para Brain Natriuretic Peptide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several groups have demonstrated the existence of self-renewing stem cells in embryonic and adult mouse brain. In vitro, these cells proliferate in response to epidermal growth factor, forming clusters of nestin-positive cells that may be dissociated and subcultured repetitively. Here we show that, in stem cell clusters derived from rat embryonic striatum, cell proliferation decreased with increasing number of passages and in response to elevated concentrations of potassium (30 mM KCl). In monolayer culture, the appearance of microtubule-associated protein type-5-immunoreactive (MAP-5(+)) cells (presumptive neurons) in response to basic fibroblast growth factor (bFGF) was reduced at low cell density and with increasing number of passages. In the presence of bFGF, elevated potassium caused a more differentiated neuronal phenotype, characterized by an increased proportion of MAP-5(+) cells, extensive neuritic branching, and higher specific activity of glutamic acid decarboxylase. Dissociated stem cells were able to invade cultured brain cell aggregates containing different proportions of neurons and glial cells, whereas they required the presence of a considerable proportion of glial cells in the host cultures to become neurofilament H-positive. The latter observation supports the view that astrocyte-derived factors influence early differentiation of the neuronal cell lineage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T cells (CTL) recognize short peptides that are derived from the proteolysis of endogenous cellular proteins and presented on the cell surface as a complex with MHC class I molecules. CTL can recognize single amino acid substitutions in proteins, including those involved in malignant transformation. The mutated sequence of an oncogene may be presented on the cell surface as a peptide, and thus represents a potential target antigen for tumour therapy. The p21ras gene is mutated in a wide variety of tumours and since the transforming mutations result in amino acid substitutions at positions 12, 13 and 61 of the protein, a limited number of ras peptides could potentially be used in the treatment of a wide variety of malignancies. A common substitution is Val for Gly at position 12 of p21ras. In this study, we show that the peptide sequence from position 5 to position 14 with Val at position 12-ras p5-14 (Val-12)-has a motif which allows it to bind to HLA-A2.1. HLA-A2.1-restricted ras p5-14 (Val-12)-specific CTL were induced in mice transgenic for both HLA-A2.1 and human beta2-microglobulin after in vivo priming with the peptide. The murine CTL could recognize the ras p5-14 (Val-12) peptide when they were presented on both murine and human target cells bearing HLA-A2.1. No cross-reactivity was observed with the native peptide ras p5-14 (Gly-12), and this peptide was not immunogenic in HLA-A2.1 transgenic mice. This represents an interesting model for the study of an HLA-restricted CD8 cytotoxic T cell response to a defined tumour antigen in vivo.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g±0.05μmol/g, p<0.001) and glutamate (0.17μmol/g±0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor that activates the adenylyl cyclase pathway. We previously demonstrated that heterologous desensitization of the receptor by protein kinase C correlated with phosphorylation in a 33-amino acid-long segment of the receptor carboxyl-terminal cytoplasmic tail. Here, we determined that the in vivo sites of phosphorylation are four serine doublets present at positions 431/432, 441/442, 444/445, and 451/452. In vitro phosphorylation of fusion proteins containing mutant receptor C-tails, however, indicated that whereas serines at position 431/432 were good substrates for protein kinase C (PKC), serines 444/445 and 451/452 were poor substrates, and serines 441/442 were not substrates. In addition, serine 416 was phosphorylated on fusion protein but not in intact cells. This indicated that in vivo a different PKC isoform or a PKC-activated kinase may phosphorylate the receptor. The role of phosphorylation on receptor desensitization was assessed using receptor mutants expressed in COS cells or Chinese hamster lung fibroblasts. Mutation of any single serine doublet to alanines reduced the extent of phorbol 12-myristate 13-acetate-induced desensitization, whereas substitution of any combination of two serine doublets suppressed it. Our data thus show that the glucagon-like peptide-1 receptor can be phosphorylated in response to phorbol 12-myristate 13-acetate on four different sites within the cytoplasmic tail. Furthermore, phosphorylation of at least three sites was required for desensitization, although maximal desensitization was only achieved when all four sites were phosphorylated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exogenously added synthetic peptides can mimic endogenously produced antigenic peptides recognized on target cells by MHC class I-restricted cytolytic T lymphocytes. While it is assumed that exogenous peptides associate with class I molecules on the target cell surface, direct binding of peptides to cell-associated class I molecules has been difficult to demonstrate. Using a newly developed binding assay based on photoaffinity labeling, we have investigated the interaction of two antigenic peptides, known to be recognized in the context of H-2Kd or H-2Db, respectively, with 20 distinct class I alleles on living cells. None of the class I alleles tested, with the exception of H-2Kd or H-2Db, bound either of the peptides, thus demonstrating the exquisite specificity of peptide binding to class I molecules. Moreover, peptide binding to cell-associated H-2Kd was drastically reduced when metabolic energy, de novo protein synthesis or protein egress from the endoplasmic reticulum was inhibited. It is thus likely that exogenously added peptides do not associate with the bulk of class I molecules expressed at the cell surface, but rather bind to short-lived molecules devoid of endogenous peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.