923 resultados para Bound Entanglement
Resumo:
In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generalized linear regression models. We provide insights into the dependence of the error bars on the location of the data points and we derive an upper bound on the true error bars in terms of the contributions from individual data points which are themselves easily evaluated.
Resumo:
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.
Resumo:
Gallager-type error-correcting codes that nearly saturate Shannon's bound are constructed using insight gained from mapping the problem onto that of an Ising spin system. The performance of the suggested codes is evaluated for different code rates in both finite and infinite message length.
Resumo:
Statistical physics is employed to evaluate the performance of error-correcting codes in the case of finite message length for an ensemble of Gallager's error correcting codes. We follow Gallager's approach of upper-bounding the average decoding error rate, but invoke the replica method to reproduce the tightest general bound to date, and to improve on the most accurate zero-error noise level threshold reported in the literature. The relation between the methods used and those presented in the information theory literature are explored.
Resumo:
Specific association of tissue transglutaminase (tTG) with matrix fibronectin (FN) results in the formation of an extracellular complex (tTG-FN) with distinct adhesive and pro-survival characteristics. tTG-FN supports RGD-independent cell adhesion of different cell types and the formation of distinctive RhoA-dependent focal adhesions following inhibition of integrin function by competitive RGD peptides and function blocking anti-integrin antibodies alpha5beta1. Association of tTG with its binding site on the 70-kDa amino-terminal FN fragment does not support this cell adhesion process, which seems to involve the entire FN molecule. RGD-independent cell adhesion to tTG-FN does not require transamidating activity, is mediated by the binding of tTG to cell-surface heparan sulfate chains, is dependent on the function of protein kinase Calpha, and leads to activation of the cell survival focal adhesion kinase. The tTG-FN complex can maintain cell viability of tTG-null mouse dermal fibroblasts when apoptosis is induced by inhibition of RGD-dependent adhesion (anoikis), suggesting an extracellular survival role for tTG. We propose a novel RGD-independent cell adhesion mechanism that promotes cell survival when the anti-apoptotic role mediated by RGD-dependent integrin function is reduced as in tissue injury, which is consistent with the externalization and binding of tTG to fibronectin following cell damage/stress.
Resumo:
A variety of iron compounds containing vinyl or thiol functional groups (used as photoactivators) have been synthesised and some of these were successfully bound to both polyethylene and polypropylene backbones during processing in the presence of peroxide and interlinking agent. Concentrates (masterbatches) of the photoactivators in PP and PE were prepared and the pro-oxidant effect of the diluted masterbatches in absence and presence of an antioxidant was evaluated. An antioxidant photoactivator (FeDNC ) was found to sensitise the photoactivity of pro-oxidants (Metone A / Metone M) whereas an antioxidant (ZnDNC) was found to stabilise the polymer (PP and PE) containing both of these combinations. It was observed that the lower concentration of FeDNC sensitises the stability of the polymer containing very small concentration of NiDNC whereas higher concentration of FeDNC stabilises the polymer (LDPE) containing same amount of NiDNC compared to FeDNC alone. The photostability of unstabilised PP containing FeAc could be varied by varying the concentration of ZnDEC. Both the induction period and the UV - life time of the polymer increased by increasing concentration of ZnDEC. It is suggested that ligand exchange reaction may take place between FeAc and ZnDNC. A polymer bound UV stabiliser (HAEB) and a thermal stabiliser (DBBA) were used with a non extractable photoactivator (FeAc) in PP. Small concentrations of the stabilisers (HAEB and DBBA) in combination with the photoactivator (FeAc) sensitise the polymer. The antioxidant present in commercial polymer (LDPE and PP) was found to be of a hindered phenol type, which was found to antagonise with ZnDNC when used in combination with the photoactivators.
Resumo:
We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT