950 resultados para Bosch, Pieter van den
Resumo:
We present the first search for an electrically charged resonance W′ decaying to a WZ boson pair using 4.1fb-1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp̄ collider. The WZ pairs are reconstructed through their decays into three charged leptons (≤=e, μ). A total of 9 data events is observed in good agreement with the background prediction. We set 95% C.L. limits on the W′WZ coupling and on the W′ production cross section multiplied by the branching fractions. We also exclude W′ masses between 188 and 520 GeV within a simple extension of the standard model and set the most restrictive limits to date on low-scale technicolor models. © 2010 The American Physical Society.
Resumo:
Incluye Bibliografía
Resumo:
The objective of this study was to evaluate the effects of adding ascorbic acid to the media for in vitro culture of cattle ovarian fragments and to determine their effects on growth activation and viability of early-stage follicles. The ovarian cortex was divided into small fragments; one fragment was immediately fixed (control) and the other fragments were cultured in minimum essential medium (MEM) supplemented or not with various doses of ascorbic acid. Ovarian tissue was processed for histology, transmission electron microscopy (TEM) and immunohistochemical demonstration of proliferating cell nuclear antigen (PCNA). Compared with control fragments, the percentage of primordial follicles was reduced (p < 0.05) and the percentage of growing follicles had increased (p < 0.05) in cultured cortical fragments, independent of the tested medium or incubation time. Furthermore, compared with control tissue, culture of ovarian cortex for 8 days reduced the percentages of healthy, viable follicles (p < 0.05), but not when cultures were supplemented with 25, 50 or 100 μg/ml of ascorbic acid. Ultrastructural and immunohistochemical analysis of 8 day cultured ovarian cortical fragments, however, showed the integrity and viability of follicles only when fragments were cultured in presence of 50 μg/ml of ascorbic acid. In conclusion, this study demonstrated that addition of ascorbic acid to MEM at a concentration of 50 μg/ml not only stimulates the activation of 8 day in vitro cultured cattle primordial follicles and subsequent growth of activated follicles, but also safeguards the viability of these early-stage follicles. © 2012 Copyright Cambridge University Press.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Os vírus linfotrópicos de células T humanas do tipo I e II (HLTV-I/II) apresentam genoma de ácido ribonucléico (RNA) e infectam geralmente células CD4+, com relação endêmica em determinadas áreas como Japão e Caribe com predomínio maior ou menor em outras regiões; na Amazônia brasileira as pesquisas estão correlacionadas principalmente à população indígena. Estes vírus estão associados a doenças malígnas, desordens neurológicas e imunodeficiências, ocasionando viremia por longo período, sem manifestações clínicas. O HTLV é considerado agente etiógico da Leucemia/ linfoma de célula T do adulto (L/LTA) e Parapasemia espática tropical/Mielopatia associada ao HTLV-I (PET/HAM) dentre outras. Este estudo tem como objetivo investigar a presença de HTLV e determinar o tipo mais freqüente (HTLV-I ou HTLV-II) em crianças com Leucemia Linfóide Aguda, matriculadas no serviço de referência para Câncer em Belém, observando a via de transmissão pelo aleitamento materno, os sintomas neurológcas relacionados com a infecção a revisão bibliográfica pertinente. A pesquisa dos vírus foi realizada pela técnica de PCR (Reação em Cadeia da Polimerase), que permite a distinção entre HTLV-I e HTLV-II. Foram observados os parâmetros de idade, sexo, lesões cutâneas, marcha e transfusão sanguínea através de porcentagens. O HTLV-I foi positivo em uma criança do sexo feminino, sem relação com transmissão por aleitamento materno, e não houve o envolvimento do HTLV como agente etiológico de neoplasia de células linfóide na faixa etária pediátrica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes ( IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 <= f(0)/Hz <= 2000 and decay timescale 0.0001 less than or similar to tau/s less than or similar to 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 <= M/ M circle dot <= 450 and component mass ratios of either 1: 1 or 4: 1. For systems with total mass 100 <= M/M circle dot <= 150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9 x 10(-8) Mpc(-3) yr(-1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l = m = 2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
Resumo:
In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of 10(-2)M circle dot c(2), with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.
Resumo:
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M(circle dot)c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Resumo:
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a 'blind injection challenge' similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs' angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M circle dot + 10M circle dot (50M circle dot + 50M circle dot) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to similar to 15% for 50M circle dot + 50M circle dot BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.
Resumo:
The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t) signal and the associated uncertainties. The systematic uncertainties of the h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 mu s at high frequency. A bias lower than 4 mu s and depending on the sky direction of the GW is also present.