987 resultados para Boecio, ca. 475-524
Resumo:
The last interglacial period (about 125,000 years ago) is thought to have been at least as warm as the present climate (Kukla et al., 2002, doi:10.1006/qres.2001.2316). Owing to changes in the Earth's orbit around the Sun, it is thought that insolation in the Northern Hemisphere varied more strongly than today on seasonal timescales (Berger, 1987, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2), which would have led to corresponding changes in the seasonal temperature cycle (Montoya et al., 2000, doi:10.1175/1520-0442(2000)013<1057:CSFKBW>2.0.CO;2). Here we present seasonally resolved proxy records using corals from the northernmost Red Sea, which record climate during the last interglacial period, the late Holocene epoch and the present. We find an increased seasonality in the temperature recorded in the last interglacial coral. Today, climate in the northern Red Sea is sensitive to the North Atlantic Oscillation (Felis et al., 2000 doi:10.1029/1999PA000477; Rimbu et al., 2001, doi:10.1029/2001GL013083), a climate oscillation that strongly influences winter temperatures and precipitation in the North Atlantic region. From our coral records and simulations with a coupled atmosphere-ocean circulation model, we conclude that a tendency towards the high-index state of the North Atlantic Oscillation during the last interglacial period, which is consistent with European proxy records (Zagwijn, 1996, doi:10.1016/0277-3791(96)00011-X; Aalbersberg and Litt, 1998, doi:10.1002/(SICI)1099-1417(1998090)13:5<367::AID-JQS400>3.0.CO;2-I; Klotz et al., 2003, doi:10.1016/S0921-8181(02)00222-9), contributed to the larger amplitude of the seasonal cycle in the Middle East.
Resumo:
An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.
Resumo:
Explanations for the demise of the Classic Maya civilization on the Yucatán Peninsula during the Terminal Classic Period (TCP; CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. Our fossil coral results from Bonaire indicate strong interannual to decadal SST and SSS variability in the southern Caribbean Sea during the TCP with multiyear extremes of high SSS and high SST that coincide with droughts on the Yucatán Peninsula. The results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes on the Yucatán Peninsula during the TCP that complement the often-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of ocean-atmosphere interactions in the Caribbean Sea related to the multiyear variations in Caribbean Sea surface conditions as an important driver of the spatially complex pattern of hydrological anomalies during the TCP.
Resumo:
The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.