846 resultados para Bit error rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to support intelligent transportation system (ITS) road safety applications such as collision avoidance, lane departure warnings and lane keeping, Global Navigation Satellite Systems (GNSS) based vehicle positioning system has to provide lane-level (0.5 to 1 m) or even in-lane-level (0.1 to 0.3 m) accurate and reliable positioning information to vehicle users. However, current vehicle navigation systems equipped with a single frequency GPS receiver can only provide road-level accuracy at 5-10 meters. The positioning accuracy can be improved to sub-meter or higher with the augmented GNSS techniques such as Real Time Kinematic (RTK) and Precise Point Positioning (PPP) which have been traditionally used in land surveying and or in slowly moving environment. In these techniques, GNSS corrections data generated from a local or regional or global network of GNSS ground stations are broadcast to the users via various communication data links, mostly 3G cellular networks and communication satellites. This research aimed to investigate the precise positioning system performances when operating in the high mobility environments. This involves evaluation of the performances of both RTK and PPP techniques using: i) the state-of-art dual frequency GPS receiver; and ii) low-cost single frequency GNSS receiver. Additionally, this research evaluates the effectiveness of several operational strategies in reducing the load on data communication networks due to correction data transmission, which may be problematic for the future wide-area ITS services deployment. These strategies include the use of different data transmission protocols, different correction data format standards, and correction data transmission at the less-frequent interval. A series of field experiments were designed and conducted for each research task. Firstly, the performances of RTK and PPP techniques were evaluated in both static and kinematic (highway with speed exceed 80km) experiments. RTK solutions achieved the RMS precision of 0.09 to 0.2 meter accuracy in static and 0.2 to 0.3 meter in kinematic tests, while PPP reported 0.5 to 1.5 meters in static and 1 to 1.8 meter in kinematic tests by using the RTKlib software. These RMS precision values could be further improved if the better RTK and PPP algorithms are adopted. The tests results also showed that RTK may be more suitable in the lane-level accuracy vehicle positioning. The professional grade (dual frequency) and mass-market grade (single frequency) GNSS receivers were tested for their performance using RTK in static and kinematic modes. The analysis has shown that mass-market grade receivers provide the good solution continuity, although the overall positioning accuracy is worse than the professional grade receivers. In an attempt to reduce the load on data communication network, we firstly evaluate the use of different correction data format standards, namely RTCM version 2.x and RTCM version 3.0 format. A 24 hours transmission test was conducted to compare the network throughput. The results have shown that 66% of network throughput reduction can be achieved by using the newer RTCM version 3.0, comparing to the older RTCM version 2.x format. Secondly, experiments were conducted to examine the use of two data transmission protocols, TCP and UDP, for correction data transmission through the Telstra 3G cellular network. The performance of each transmission method was analysed in terms of packet transmission latency, packet dropout, packet throughput, packet retransmission rate etc. The overall network throughput and latency of UDP data transmission are 76.5% and 83.6% of TCP data transmission, while the overall accuracy of positioning solutions remains in the same level. Additionally, due to the nature of UDP transmission, it is also found that 0.17% of UDP packets were lost during the kinematic tests, but this loss doesn't lead to significant reduction of the quality of positioning results. The experimental results from the static and the kinematic field tests have also shown that the mobile network communication may be blocked for a couple of seconds, but the positioning solutions can be kept at the required accuracy level by setting of the Age of Differential. Finally, we investigate the effects of using less-frequent correction data (transmitted at 1, 5, 10, 15, 20, 30 and 60 seconds interval) on the precise positioning system. As the time interval increasing, the percentage of ambiguity fixed solutions gradually decreases, while the positioning error increases from 0.1 to 0.5 meter. The results showed the position accuracy could still be kept at the in-lane-level (0.1 to 0.3 m) when using up to 20 seconds interval correction data transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased use of powered two-wheelers (PTWs) often underlies increases in the number of reported crashes, promoting research into PTW safety. PTW riders are overrepresented in crash and injury statistics relative to exposure and, as such, are considered vulnerable road users. PTW use has increased substantially over the last decade in many developed countries. One such country is Australia, where moped and scooter use has increased at a faster rate than motorcycle use in recent years. Increased moped use is particularly evident in the State of Queensland which is one of four Australian jurisdictions where moped riding is permitted for car licence holders and a motorcycle licence is not required. A moped is commonly a small motor scooter and is limited to a maximum design speed of 50 km/h and a maximum engine cylinder capacity of 50 cubic centimetres. Scooters exceeding either of these specifications are classed as motorcycles in all Australian jurisdictions. While an extensive body of knowledge exists on motorcycle safety, some of which is relevant to moped and scooter safety, the latter PTW types have received comparatively little focused research attention. Much of the research on moped safety to date has been conducted in Europe where they have been popular since the mid 20th century, while some studies have also been conducted in the United States. This research is of limited relevance to Australia due to socio-cultural, economic, regulatory and environmental differences. Moreover, while some studies have compared motorcycles to mopeds in terms of safety, no research to date has specifically examined the differences and similarities between mopeds and larger scooters, or between larger scooters and motorcycles. To address the need for a better understanding of moped and scooter use and safety, the current program of research involved three complementary studies designed to achieve the following aims: (1) develop better knowledge and understanding of moped and scooter usage trends and patterns; and (2) determine the factors leading to differences in moped, scooter and motorcycle safety. Study 1 involved six-monthly observations of PTW types in inner city parking areas of Queensland’s capital city, Brisbane, to monitor and quantify the types of PTW in use over a two year period. Study 2 involved an analysis of Queensland PTW crash and registration data, primarily comparing the police-reported crash involvement of mopeds, scooters and motorcycles over a five year period (N = 7,347). Study 3 employed both qualitative and quantitative methods to examine moped and scooter usage in two components: (a) four focus group discussions with Brisbane-based Queensland moped and scooter riders (N = 23); and (b) a state-wide survey of Queensland moped and scooter riders (N = 192). Study 1 found that of the PTW types parked in inner city Brisbane over the study period (N = 2,642), more than one third (36.1%) were mopeds or larger scooters. The number of PTWs observed increased at each six-monthly phase, but there were no significant changes in the proportions of PTW types observed across study phases. There were no significant differences in the proportions or numbers of PTW type observed by season. Study 2 revealed some important differences between mopeds, scooters and motorcycles in terms of safety and usage through analysis of crash and registration data. All Queensland PTW registrations doubled between 2001 and 2009, but there was an almost fifteen-fold increase in moped registrations. Mopeds subsequently increased as a proportion of Queensland registered PTWs from 1.2 percent to 8.8 percent over this nine year period. Moped and scooter crashes increased at a faster rate than motorcycle crashes over the five year study period from July 2003 to June 2008, reflecting their relatively greater increased usage. Crash rates per 10,000 registrations for the study period were only slightly higher for mopeds (133.4) than for motorcycles and scooters combined (124.8), but estimated crash rates per million vehicle kilometres travelled were higher for mopeds (6.3) than motorcycles and scooters (1.7). While the number of crashes increased for each PTW type over the study period, the rate of crashes per 10,000 registrations declined by 40 percent for mopeds compared with 22 percent for motorcycles and scooters combined. Moped and scooter crashes were generally less severe than motorcycle crashes and this was related to the particular crash characteristics of the PTW types rather than to the PTW types themselves. Compared to motorcycle and moped crashes, scooter crashes were less likely to be single vehicle crashes, to involve a speeding or impaired rider, to involve poor road conditions, or to be attributed to rider error. Scooter and moped crashes were more likely than motorcycle crashes to occur on weekdays, in lower speed zones and at intersections. Scooter riders were older on average (39) than moped (32) and motorcycle (35) riders, while moped riders were more likely to be female (36%) than scooter (22%) or motorcycle riders (7%). The licence characteristics of scooter and motorcycle riders were similar, with moped riders more likely to be licensed outside of Queensland and less likely to hold a full or open licence. The PTW type could not be identified in 15 percent of all cases, indicating a need for more complete recording of vehicle details in the registration data. The focus groups in Study 3a and the survey in Study 3b suggested that moped and scooter riders are a heterogeneous population in terms of demographic characteristics, riding experience, and knowledge and attitudes regarding safety and risk. The self-reported crash involvement of Study 3b respondents suggests that most moped and scooter crashes result in no injury or minor injury and are not reported to police. Study 3 provided some explanation for differences observed in Study 2 between mopeds and scooters in terms of crash involvement. On the whole, scooter riders were older, more experienced, more likely to have undertaken rider training and to value rider training programs. Scooter riders were also more likely to use protective clothing and to seek out safety-related information. This research has some important practical implications regarding moped and scooter use and safety. While mopeds and scooters are generally similar in terms of usage, and their usage has increased, scooter riders appear to be safer than moped riders due to some combination of superior skills and safer riding behaviour. It is reasonable to expect that mopeds and scooters will remain popular in Queensland in future and that their usage may further increase, along with that of motorcycles. Future policy and planning should consider potential options for encouraging moped riders to acquire better riding skills and greater safety awareness. While rider training and licensing appears an obvious potential countermeasure, the effectiveness of rider training has not been established and other options should also be strongly considered. Such options might include rider education and safety promotion, while interventions could also target other road users and urban infrastructure. Future research is warranted in regard to moped and scooter safety, particularly where the use of those PTWs has increased substantially from low levels. Research could address areas such as rider training and licensing (including program evaluations), the need for more detailed and reliable data (particularly crash and exposure data), protective clothing use, risks associated with lane splitting and filtering, and tourist use of mopeds. Some of this research would likely be relevant to motorcycle use and safety, as well as that of mopeds and scooters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To use our Bayesian method of motor unit number estimation (MUNE) to evaluate lower motor neuron degeneration in ALS. Methods: In subjects with ALS we performed serial MUNE studies. We examined the repeatability of the test and then determined whether the loss of MUs was fitted by an exponential or Weibull distribution. Results: The decline in motor unit (MU) numbers was well-fitted by an exponential decay curve. We calculated the half life of MUs in the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and/or extensor digitorum brevis (EDB) muscles. The mean half life of the MUs of ADM muscle was greater than those of the APB or EDB muscles. The half-life of MUs was less in the ADM muscle of subjects with upper limb than in those with lower limb onset. Conclusions: The rate of loss of lower motor neurons in ALS is exponential, the motor units of the APB decay more quickly than those of the ADM muscle and the rate of loss of motor units is greater at the site of onset of disease. Significance: This shows that the Bayesian MUNE method is useful in following the course and exploring the clinical features of ALS. 2012 International Federation of Clinical Neurophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Balanced method was introduced as a class of quasi-implicit methods, based upon the Euler-Maruyama scheme, for solving stiff stochastic differential equations. We extend the Balanced method to introduce a class of stable strong order 1. 0 numerical schemes for solving stochastic ordinary differential equations. We derive convergence results for this class of numerical schemes. We illustrate the asymptotic stability of this class of schemes is illustrated and is compared with contemporary schemes of strong order 1. 0. We present some evidence on parametric selection with respect to minimising the error convergence terms. Furthermore we provide a convergence result for general Balanced style schemes of higher orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of hydrotherapy on time-trial performance and cardiac parasympathetic reactivation during recovery from intense training. On three occasions, 18 well-trained cyclists completed 60 min high-intensity cycling, followed 20 min later by one of three 10-min recovery interventions: passive rest (PAS), cold water immersion (CWI), or contrast water immersion (CWT). The cyclists then rested quietly for 160 min with R-R intervals and perceptions of recovery recorded every 30 min. Cardiac parasympathetic activity was evaluated using the natural logarithm of the square root of mean squared differences of successive R-R intervals (ln rMSSD). Finally, the cyclists completed a work-based cycling time trial. Effects were examined using magnitude-based inferences. Differences in time-trial performance between the three trials were trivial. Compared with PAS, general fatigue was very likely lower for CWI (difference [90% confidence limits; -12% (-18; -5)]) and CWT [-11% (-19; -2)]. Leg soreness was almost certainly lower following CWI [-22% (-30; -14)] and CWT [-27% (-37; -15)]. The change in mean ln rMSSD following the recovery interventions (ln rMSSD(Post-interv)) was almost certainly higher following CWI [16.0% (10.4; 23.2)] and very likely higher following CWT [12.5% (5.5; 20.0)] compared with PAS, and possibly higher following CWI [3.7% (-0.9; 8.4)] compared with CWT. The correlations between performance, ln rMSSD(Post-interv) and perceptions of recovery were unclear. A moderate correlation was observed between ln rMSSD(Post-interv) and leg soreness [r = -0.50 (-0.66; -0.29)]. Although the effects of CWI and CWT on performance were trivial, the beneficial effects on perceptions of recovery support the use of these recovery strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Total hip arthroplasty (THA) is a commonly performed procedure and numbers are increasing with ageing populations. One of the most serious complications in THA are surgical site infections (SSIs), caused by pathogens entering the wound during the procedure. SSIs are associated with a substantial burden for health services, increased mortality and reduced functional outcomes in patients. Numerous approaches to preventing these infections exist but there is no gold standard in practice and the cost-effectiveness of alternate strategies is largely unknown. Objectives The aim of this project was to evaluate the cost-effectiveness of strategies claiming to reduce deep surgical site infections following total hip arthroplasty in Australia. The objectives were: 1. Identification of competing strategies or combinations of strategies that are clinically relevant to the control of SSI related to hip arthroplasty 2. Evidence synthesis and pooling of results to assess the volume and quality of evidence claiming to reduce the risk of SSI following total hip arthroplasty 3. Construction of an economic decision model incorporating cost and health outcomes for each of the identified strategies 4. Quantification of the effect of uncertainty in the model 5. Assessment of the value of perfect information among model parameters to inform future data collection Methods The literature relating to SSI in THA was reviewed, in particular to establish definitions of these concepts, understand mechanisms of aetiology and microbiology, risk factors, diagnosis and consequences as well as to give an overview of existing infection prevention measures. Published economic evaluations on this topic were also reviewed and limitations for Australian decision-makers identified. A Markov state-transition model was developed for the Australian context and subsequently validated by clinicians. The model was designed to capture key events related to deep SSI occurring within the first 12 months following primary THA. Relevant infection prevention measures were selected by reviewing clinical guideline recommendations combined with expert elicitation. Strategies selected for evaluation were the routine use of pre-operative antibiotic prophylaxis (AP) versus no use of antibiotic prophylaxis (No AP) or in combination with antibiotic-impregnated cement (AP & ABC) or laminar air operating rooms (AP & LOR). The best available evidence for clinical effect size and utility parameters was harvested from the medical literature using reproducible methods. Queensland hospital data were extracted to inform patients’ transitions between model health states and related costs captured in assigned treatment codes. Costs related to infection prevention were derived from reliable hospital records and expert opinion. Uncertainty of model input parameters was explored in probabilistic sensitivity analyses and scenario analyses and the value of perfect information was estimated. Results The cost-effectiveness analysis was performed from a health services perspective using a hypothetical cohort of 30,000 THA patients aged 65 years. The baseline rate of deep SSI was 0.96% within one year of a primary THA. The routine use of antibiotic prophylaxis (AP) was highly cost-effective and resulted in cost savings of over $1.6m whilst generating an extra 163 QALYs (without consideration of uncertainty). Deterministic and probabilistic analysis (considering uncertainty) identified antibiotic prophylaxis combined with antibiotic-impregnated cement (AP & ABC) to be the most cost-effective strategy. Using AP & ABC generated the highest net monetary benefit (NMB) and an incremental $3.1m NMB compared to only using antibiotic prophylaxis. There was a very low error probability that this strategy might not have the largest NMB (<5%). Not using antibiotic prophylaxis (No AP) or using both antibiotic prophylaxis combined with laminar air operating rooms (AP & LOR) resulted in worse health outcomes and higher costs. Sensitivity analyses showed that the model was sensitive to the initial cohort starting age and the additional costs of ABC but the best strategy did not change, even for extreme values. The cost-effectiveness improved for a higher proportion of cemented primary THAs and higher baseline rates of deep SSI. The value of perfect information indicated that no additional research is required to support the model conclusions. Conclusions Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalised patients, save lives and enhance resource allocation. By implementing a more beneficial infection control strategy, scarce health care resources can be used more efficiently to the benefit of all members of society. The results of this project provide Australian policy makers with key information about how to efficiently manage risks of infection in THA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb = 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during slow maximal eccentric contraction compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and re-injury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest greater attention be given to neural function of the knee flexors following hamstring strain injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Hamstring strain injuries (HSIs) are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of gait. The impact of prior strain injury on neuromuscular function of the hamstrings during tasks requiring high rates of torque development has received little attention. The purpose of this study is to determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of eccentric muscle activation, rate of torque development and impulse 30, 50 and 100ms after the onset of electromyographical or torque development in the previously injured limb compared to the uninjured limb. Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, p=0.008; IMP, p=0.005) and 100ms (RTD, p=0.001; IMP p<0.001) after the onset of contraction. There was also a non-significant trend for rate of torque development during -1800.s-1 to be lower 100ms after onset of contraction (p=0.064). Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, p=0.009; -1800.s-1, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during eccentric contraction. Lower muscle activation was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings have important implications for hamstring strain injury and re-injury and suggest greater attention be given to neural function of the knee flexors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ∼10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results. We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion. These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules. © 2008 Walt et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In their paper Lindberg and Ludvigsen (2012) have correctly identified the lack of evidence-based nurse-sensitive indicators measuring the quality of haemodialysis nursing care. The authors suggest that the intradialytic ultrafiltration rate (UFR) (total fluid removed divided by the total time in a single dialysis treatment, measured in litres per hour) may be one such indicator. Importantly it is best practice to minimise high UFRs as they are associated with higher risk of cardiovascular events and vascular access complications (Curatola et al., 2011). However, this does not justify UFR to qualify as a nurse-sensitive indicator of quality in the haemodialysis context. The aim of this response is to voice our concerns over the proposal to use haemodialysis treatment UFR as a haemodialysis nurse-sensitive quality indicator...