870 resultados para Birds - Ecology - Victoria
Resumo:
Engagement with globalisation is growing in the field of youth transitions from out of home care. This includes cross national exchange of research, policy and practise, regional advocacy networking and global policy development. Furthering this emerging international child welfare perspective requires extending it to countries in the developing world and building conceptual frameworks which encompass a social ecology of care leaving, including its global dimension, the latter needs to address not only the needs, expectations and rights of care leavers but also the theories of change underpinning service design and delivery. Such a model is presented combining resilience and social capital as personal assets situated within a social ecology of support. To illustrate how this provides a means to help engage with the experience of countries where there appears to be very little information available on care leaving, a small scale South African initiative is considered. SA-YES is a youth mentoring project for young people leaving a variety of out of home placements. Planned as a three-year pilot, initial results are encouraging but require more rigorous evaluation focusing on program process and outcomes, quality of interpersonal relationships and synchronisation with cultural expectations and policy environment.
Resumo:
Patterns of endemism in the Neotropics have been explained by restriction of forest to ‘refugia’ in arid cold-stages of the Quaternary (Haffer J (1969)
Speciation in Amazonian forest birds. Science 165: 131–137). The palaeoecological record, however, shows no such forest contraction. We review
palaeoecological and phylogenetic data on the response of Neotropical taxa and communities to climatic changes of the Cenozoic. Solar insolation varies
over this period with latitude and geography, including shifts in opposite directions between high and low latitudes. In the Neotropics, distribution and
abundance patterns originate on a wide range of timescales through the Cenozoic, down to the currently dominant precession forcing (20 kyr). In contrast,
distributions and abundances at higher latitudes are controlled by obliquity forcing (40 kyr). The patterns observed by Haffer (1969) are likely derived
from pre-Quaternary radiations and are not inconsistent with palaeoecological findings of continuous forest cover in major areas of the Neotropics
during the Quaternary. The relative proportions of speciation processes have changed through time between predominantly sympatric to predominantly
allopatric depending on the prevailing characteristics of orbitally forced climatic changes. Behaviour of Neotropical organisms and ecosystems on long
timescales may be influenced much more by precessional forcing than by the obliquity forcing that controls high-latitude climate change and glaciations.
Resumo:
A prevalence study of primary biliary cirrhosis was carried out in the state of Victoria, Australia, by means of a mail survey of specialist physicians and a review of hospital records. Eighty four cases were identified, giving a prevalence of 19.1 per million population (95% confidence limits (CI) 15.3, 23.7), which is among the lowest in published reports. The prevalence in the Australian born, at risk population (women over the age of 24) was 51 per million (95% CI 37.5, 67.9). Both these figures are considerably lower than those in populations of similar age distribution in the UK and northern Europe. Since most Victorians are descended from British or European settlers, the low prevalence of primary biliary cirrhosis in this study supports the hypothesis that local environmental factors may be important in the pathogenesis of this disease.
Resumo:
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Resumo:
I draw attention to the need for ecologists to take spatial structure into account more seriously in hypothesis testing. If spatial autocorrelation is ignored, as it usually is, then analyses of ecological patterns in terms of environmental factors can produce very misleading results. This is demonstrated using synthetic but realistic spatial patterns with known spatial properties which are subjected to classical correlation and multiple regression analyses. Correlation between an autocorrelated response variable and each of a set of explanatory variables is strongly biased in favour of those explanatory variables that are highly autocorrelated - the expected magnitude of the correlation coefficient increases with autocorrelation even if the spatial patterns are completely independent. Similarly, multiple regression analysis finds highly autocorrelated explanatory variables "significant" much more frequently than it should. The chances of mistakenly identifying a "significant" slope across an autocorrelated pattern is very high if classical regression is used. Consequently, under these circumstances strongly autocorrelated environmental factors reported in the literature as associated with ecological patterns may not actually be significant. It is likely that these factors wrongly described as important constitute a red-shifted subset of the set of potential explanations, and that more spatially discontinuous factors (those with bluer spectra) are actually relatively more important than their present status suggests. There is much that ecologists can do to improve on this situation. I discuss various approaches to the problem of spatial autocorrelation from the literature and present a randomisation test for the association of two spatial patterns which has advantages over currently available methods.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Spatial analysis was used to explore the distribution of individual species in an ectomycorrhizal (ECM) fungal community to address: whether mycorrhizas of individual ECM fungal species were patchily distributed, and at what scale; and what the causes of this patchiness might be. Ectomycorrhizas were extracted from spatially explicit samples of the surface organic horizons of a pine plantation. The number of mycorrhizas of each ECM fungal species was recorded using morphotyping combined with internal transcribed spacer (ITS) sequencing. Semivariograms, kriging and cluster analyses were used to determine both the extent and scale of spatial autocorrelation in species abundances, potential interactions between species, and change over time. The mycorrhizas of some, but not all, ECM fungal species were patchily distributed and the size of patches differed between species. The relative abundance of individual ECM fungal species and the position of patches of ectomycorrhizas changed between years. Spatial and temporal analysis revealed a dynamic ECM fungal community with many interspecific interactions taking place, despite the homogeneity of the host community. The spatial pattern of mycorrhizas was influenced by the underlying distribution of fine roots, but local root density was in turn influenced by the presence of specific fungal species.
Resumo:
Predicting how species distributions might shift as global climate changes is fundamental to the successful adaptation of conservation policy. An increasing number of studies have responded to this challenge by using climate envelopes, modeling the association between climate variables and species distributions. However, it is difficult to quantify how well species actually match climate. Here, we use null models to show that species-climate associations found by climate envelope methods are no better than chance for 68 of 100 European bird species. In line with predictions, we demonstrate that the species with distribution limits determined by climate have more northerly ranges. We conclude that scientific studies and climate change adaptation policies based on the indiscriminate use of climate envelope methods irrespective of species sensitivity to climate may be misleading and in need of revision.