990 resultados para Biology, Cell|Biology, Animal Physiology|Chemistry, Biochemistry|Health Sciences, Oncology
Resumo:
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.
Resumo:
The presence Of D-amino-acid-containing polypeptides, defensin-like peptide (DLP)-2 and Ornithorhyncus venom C-type natriuretic peptide (OvCNP)b, in platypus venom suggested the existence of a mammalian D-amino-acid-residue isomerase(s) responsible for the modification of the all-L-amino acid precursors. We show here that this enzyme(s) is present in the venom gland extract and is responsible for the creation of DLP-2 from DLP-4 and OvCNPb from OvCNPa. The isomerisation reaction is freely reversible and under well defined laboratory conditions catalyses the interconversion of the DLPs to full equilibration. The isomerase is similar to 50-60 kDa and is inhibited by methanol and the peptidase inhibitor amastatin. This is the first known L-to-D-amino-acid-residue isomerase in a mammal. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Background: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Cellular functions hinge on the ability of proteins to adopt their correct folds, and misfolded proteins can lead to disease. Here, we focus on the proteins that catalyze disulfide bond formation, a step in the oxidative folding pathway that takes place in specialized cellular compartments. In the endoplasmic reticulum of eukaryotes, disulfide formation is catalyzed by protein disulfide isomerase (PDI); by contrast, prokaryotes produce a family of disulfide bond (Dsb) proteins, which together achieve an equivalent outcome in the bacterial periplasm. The recent crystal structure of yeast PDI has increased our understanding of the function and mechanism of PDI. Comparison of the structure of yeast PDI with those of bacterial DsbC and DsbG reveals some similarities but also striking differences that suggest directions for future research aimed at unraveling the catalytic mechanism of disulfide bond formation in the cell.
Resumo:
The chemolithoautotrophic bacterium NT-26 (isolated from a gold mine in the Northern Territory of Australia) is unusual in that it acquires energy by oxidizing arsenite to arsenate while most other arsenic-oxidizing organisms perform this reaction as part of a detoxification mechanism against the potentially harmful arsenite [present as As(OH)(3) at neutral pH]. The enzyme that performs this reaction in NT-26 is the molybdoenzyme arsenite oxidase, and it has been previously isolated and characterized. Here we report the direct (unmediated) electrochemistry of NT-26 arsenite oxidase confined to the surface of a pyrolytic graphite working electrode. We have been able to demonstrate that the enzyme functions natively while adsorbed on the electrode where it displays stable and reproducible catalytic electrochemistry in the presence of arsenite. We report a pH dependence of the catalytic electrochemical potential of -33 mV/pH unit that is indicative of proton-coupled electron transfer. We also have performed catalytic voltammetry at a number of temperatures between 5 and 25 degrees C, and the catalytic current (proportional to the turnover number) follows simple Arrhenius behavior.
Resumo:
We have developed a sensitive, non-radioactive method to assess the interaction of transcription factors/DNA-binding proteins with DNA. We have modified the traditional radiolabeled DNA gel mobility shift assay to incorporate a DNA probe end-labeled with a Texas-red fluorophore and a DNA-binding protein tagged with the green fluorescent protein to monitor precisely DNA-protein complexation by native gel electrophoresis. We have applied this method to the DNA-binding proteins telomere release factor-1 and the sex-determining region-Y, demonstrating that the method is sensitive (able to detect 100 fmol of fluorescently labeled DNA), permits direct visualization of both the DNA probe and the DNA-binding protein, and enables quantitative analysis of DNA and protein complexation, and thereby an estimation of the stoichiometry of protein-DNA binding.
Resumo:
Disease is the result of interactions amongst pathogens, the environment and host organisms. To investigate the effect of stress on Penaeus monodon, juvenile shrimp were given short term exposure to hypoxic, hyperthermic and osmotic stress twice over a 1-week period and estimates of total haemocyte count (THC), heat shock protein (HSP) 70 expression and load of gill associated virus (GAV) were determined at different time points. While no significant differences were observed in survival and THC between stressed and control shrimp (P>0.05), HSP 70 expression and GAV load changed significantly (P
Resumo:
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.
Resumo:
A central event in the invasion of a host cell by an enveloped virus is the fusion of viral and cell membranes. For many viruses, membrane fusion is driven by specific viral surface proteins that undergo large-scale conformational rearrangements, triggered by exposure to low pH in the endosome upon internalization. Here, we present evidence suggesting that in both class I (helical hairpin proteins) and class 11 (beta-structure-rich proteins) pH-dependent fusion proteins the protonation of specific histidine residues triggers fusion via an analogous molecular mechanism. These histidines are located in the vicinity of positively charged residues in the prefusion conformation, and they subsequently form salt bridges with negatively charged residues in the postfusion conformation. The molecular surfaces involved in the corresponding structural rearrangements leading to fusion are highly conserved and thus might provide a suitable common target for the design of antivirals, which could be active against a diverse range of pathogenic viruses.
Resumo:
The aim of the present study was to compare cryopreservation, osmotic tolerance and glycerol toxicity between mature and immature epididymal kangaroo spermatozoa to investigate whether the lack of cryopreservation success of cauda epididymidal spermatozoa may be related to the increased complexity of the sperm ultrastructure acquired during epididymal transit. Caput and cauda epididymidal spermatozoa were recovered from red-necked wallabies (RNW; Macropus rufogriseus) and eastern grey kangaroos (EGK; M. giganteus). In Experiment 1, caput and cauda epididymidal spermatozoa were frozen and thawed using a standard cryopreservation procedure in Triscitrate buffer with or without 20% glycerol. Although cryopreservation of caput epididymidal spermatozoa resulted in a significant increase in sperm plasma membrane damage, they were more tolerant of the procedure than spermatozoa recovered from the cauda epididymidis (P< 0.05). In Experiment 2, caput and cauda epididymidal EGK spermatozoa were diluted into phosphate-buffered saline media of varying osmolarity and their osmotic tolerance determined. Plasma membranes of caput epididymidal spermatozoa were more tolerant of hypo-osmotic media than were cauda epididymidal spermatozoa ( P< 0.05). In Experiment 3, caput and cauda epididymidal RNW spermatozoa were incubated in Tris-citrate buffer with and without 20% glycerol at 35 and 4 degrees C to examine the cytotoxic effects of glycerol. At both temperatures, caput epididymidal spermatozoa showed less plasma membrane damage compared with cauda epididymidal spermatozoa when exposed to 20% glycerol ( P< 0.05). These experiments clearly indicate that epididymal maturation of kangaroo spermatozoa results in a decreased ability to withstand the physiological stresses associated with cryopreservation.
Resumo:
Retrocyclin-1, a 0-defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 mu M) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.