981 resultados para Bio-inspired techniques
Resumo:
Cognitive radio networks sense spectrum occupancy and manage themselvesto operate in unused bands without disturbing licensed users. The detection capability of aradio system can be enhanced if the sensing process is performed jointly by a group of nodesso that the effects of wireless fading and shadowing can be minimized. However, taking acollaborative approach poses new security threats to the system as nodes can report falsesensing data to reach a wrong decision. This paper makes a review of secure cooperativespectrum sensing in cognitive radio networks. The main objective of these protocols is toprovide an accurate resolution about the availability of some spectrum channels, ensuring thecontribution from incapable users as well as malicious ones is discarded. Issues, advantagesand disadvantages of such protocols are investigated and summarized.
Resumo:
The ongoing development of the digital media has brought a new set of challenges with it. As images containing more than three wavelength bands, often called spectral images, are becoming a more integral part of everyday life, problems in the quality of the RGB reproduction from the spectral images have turned into an important area of research. The notion of image quality is often thought to comprise two distinctive areas – image quality itself and image fidelity, both dealing with similar questions, image quality being the degree of excellence of the image, and image fidelity the measure of the match of the image under study to the original. In this thesis, both image fidelity and image quality are considered, with an emphasis on the influence of color and spectral image features on both. There are very few works dedicated to the quality and fidelity of spectral images. Several novel image fidelity measures were developed in this study, which include kernel similarity measures and 3D-SSIM (structural similarity index). The kernel measures incorporate the polynomial, Gaussian radial basis function (RBF) and sigmoid kernels. The 3D-SSIM is an extension of a traditional gray-scale SSIM measure developed to incorporate spectral data. The novel image quality model presented in this study is based on the assumption that the statistical parameters of the spectra of an image influence the overall appearance. The spectral image quality model comprises three parameters of quality: colorfulness, vividness and naturalness. The quality prediction is done by modeling the preference function expressed in JNDs (just noticeable difference). Both image fidelity measures and the image quality model have proven to be effective in the respective experiments.
Resumo:
The water content in seafoods is very important since it affects their sensorial quality, microbiological stability, physical characteristics and shelf life. In this study, thermoanalytical techniques were employed to develop a simple and accurate method to determine water content (moisture) by thermogravimetry (TG) and water activity from moisture content values and freezing point depression using differential scanning calorimetry (DSC). The precision of the results suggests that TG is a suitable technique to determine moisture content in biological samples. The average water content values for fish samples of Lutjanus synagris and Ocyurus chrysurus species were 76.4 ± 5.7% and 63.3 ± 3.9%, respectively, while that of Ulva lactuca marine algae species was 76.0 ± 4.4%. The method presented here was also successfully applied to determine water activity in two species of fish and six species of marine algae collected in the Atlantic coastal waters of Bahia, in Brazil. Water activity determined in fish samples ranged from 0.946 - 0.960 and was consistent with values reported in the literature, i.e., 0.9 - 1.0. The water activity values determined in marine algae samples lay within the interval of 0.974 - 0.979.
Resumo:
Analyzing the state of the art in a given field in order to tackle a new problem is always a mandatory task. Literature provides surveys based on summaries of previous studies, which are often based on theoretical descriptions of the methods. An engineer, however, requires some evidence from experimental evaluations in order to make the appropriate decision when selecting a technique for a problem. This is what we have done in this paper: experimentally analyzed a set of representative state-of-the-art techniques in the problem we are dealing with, namely, the road passenger transportation problem. This is an optimization problem in which drivers should be assigned to transport services, fulfilling some constraints and minimizing some function cost. The experimental results have provided us with good knowledge of the properties of several methods, such as modeling expressiveness, anytime behavior, computational time, memory requirements, parameters, and free downloadable tools. Based on our experience, we are able to choose a technique to solve our problem. We hope that this analysis is also helpful for other engineers facing a similar problem
Resumo:
Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.
Resumo:
Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.
Resumo:
A biofuel was prepared from acid aqueous fraction (pH = 2) of bio-oil produced by fast pyrolysis (Bioware Technology) of lignocellulosic biomass (sugar cane residue) and tested in blends (2, 5, 10 e 20% v/v) with gasoline type C (common) marketed in Brazil. The specification tests made in the Refinery President Getúlio Vargas (PETROBRAS) showed increasing in the octane number (MON) and antiknock index (AKI) with reduction in the residue generation during the combustion. The physicochemical characteristics of the biofuel were similar that combustible alcohol allowing its use as gasoline additive.
Resumo:
A study of the partial USEPA 3050B and total ISO 14869-1:2001 digestion methods of sediments was performed. USEPA 3050B was recommended as the simpler method with less operational risk. However, the extraction ability of the method should be taken in account for the best environmental interpretation of the results. FAAS was used to quantify metal concentrations in sediment solutions. The alternative use of ICP-OES quantification should be conditioned by a previous detailed investigation and eventual correction of the matrix effect. For the first time, the EID method was employed for the detection and correction of the matrix effect in sediment ICP-OES analysis. Finally, some considerations were made about the level of metal contamination in the area under study.
Resumo:
The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
Brazilian biodiversity is a colossal source of secondary metabolites with remarkable structural features, which are valuable in further biodiscovery studies. In order to fully understand the relations and interactions of a living system with its surroundings, efforts in natural product chemistry are directed toward the challenge of detecting and identifying all the molecular components present in complex samples. It is plausible that this endeavor was born out of recent technological sophistication in secondary metabolite identification with sensitive spectroscopic instruments (MS and NMR) and higher resolving power of chromatographic systems, which allow a decrease in the amount of required sample and time to acquire data. Nevertheless, the escalation of data acquired in these analyses must be sorted with statistical and multi-way tools in order to select key information. Chromatography is also of paramount importance, more so when selected compounds need to be isolated for further investigation. However, in the course of pursuing a "greener" environment, new policies, with an aim to decrease the use of energy and solvents, are being developed and incorporated into analytical methods. Metabolomics could be an effective tool to answer questions on how living organisms in our huge biodiversity work and interact with their surroundings while also being strategic to the development of high value bio-derived products, such as phytotherapeutics and nutraceuticals. The incorporation of proper phytotherapeutics in the so-called Brazilian Unified Health System is considered an important factor for the urgent improvement and expansion of the Brazilian national health system. Furthermore, this approach could have a positive impact on the international interest toward scientific research developed in Brazil as well as the development of high value bio-derived products, which appear as an interesting economic opportunity in national and global markets. Thus, this study attempts to highlight the recent advances in analytical tools used in detection of secondary metabolites, which can be useful as bioproducts. It also emphasizes the potential avenues to be explored in Brazilian biodiversity, known for its rich chemical diversity.
Resumo:
We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA) and to construct a prediction model using partial least squares (PLS) regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.
Resumo:
Octocrylene (2-ethylhexyl 2-cyano-3,3-diphenyl-2-propenoate) is present in several sunscreens and is known to work synergistically with UV filters. We prepared eight octocrylene-related compounds to test their photoprotective activities by measuring diffuse transmittance. The compounds had varied photoprotection profiles, with Sun Protection Factors (SPF) ranging from 1 to 5 and UVA Protection Factors (UVAPF) ranging from 1 to 8. Compounds 4, 5, and 7 showed the best protection against UVB sunrays, while compounds 5, 6, and 7 presented the best results for protection from UVA, so compound 7 had the most balanced protection overall. Results for compounds 4, 8, and 9 are reported for the first time in the literature.