940 resultados para Bearing Vibration
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. © 2006 Cancer Research UK.
Resumo:
Purpose: A variety of biomass plantations are being raised for energy production. This case study is on energy production potential of seasonal oil bearing crops in India. These crops have the advantage of producing oil (liquid fuel) as well as biomass as agro residue (solid fuel). The purpose of the study is to estimate total energy yields of oil bearing crops and compare with other types of energy plantations. Also oil bearing crops bioaccumulate metals and thus phytoremediate soil. This provides scope for waste water irrigation. Design/methodology/approach: Relevant published papers on energy production by raising oil bearing crops have been analyzed. The effect of waste water irrigation and agronomic practices on increasing productivity is given special attention. Findings: It is shown that the seasonal oil bearing crops such as castor have a high potential to generate energy and this is comparable to energy produced by many perennial grasses. The energy yields of castor under irrigated condition was 196×103 MJ/ha and this is comparable to the reed canary grass which yields 195×103 MJ/ha. Some of the oil bearing crops are also super accumulators of certain toxic metals. Research limitations/implications: In this study, only all the accessible papers on the topic could be analyzed. Practical implications: This case study indicates that raising oil bearing crops such as castor using waste water has many advantages which include high energy yields, utilization of waste water for productive purpose and phytoremediation of soil. Originality/value: The comparison made between various types of energy crops for their energy generation is an original contribution. Findings of economic and environmental benefits by waste water irrigation are also of value. © Emerald Group Publishing Limited.
Resumo:
Fatigue crack propagation, tensile and fracture toughness data for four aeroengine bearing steels are reported. The steels involved are the through-hardened tool steels 18-4-1 (T1) and M50, and two similar carburized steels, RBD and Volvic. Crack growth data have been obtained at 20 °C and 280 °C to cover the range of oil temperatures experienced in aeroengine bearing operations. At 20 °C threshold ΔK values (ΔKth) ranged between 3.5 and 4.5 MPa √m with Paris exponents (m) of between 2.0 and 3.5. The lowest m-values were seen in the carburizing steels, which also exhibited lower Paris regime crack growth rates than M50 and 18-4-1. For all the steels, growth rates were higher at 280 °C,than 20 °C, although there was a slight tendency for ΔKth to increase, probably associated with oxide-induced closure at 280 °C. The effects of primary carbides, strength and toughness on fatigue crack growth behaviour are discussed, in relation to the importance of static-mode cracking. © 1990.
Resumo:
A distributed fiber sensing system based on ultraweak FBGs (UWFBGs) assisted polarization optical time-domain reflectometry (POTDR) is proposed for load and vibration sensing with improved signal-to-noise ratio (SNR) and sensitivity. UWFBGs with reflectivity higher than Rayleigh scattering coefficient per pulse are induced into a POTDR system to increase the intensity of the back signal. The performance improvement of the system has been studied. The numerical analysis has shown that the SNR and sensitivity of the system can be effectively improved by integrating UWFBGs along the whole sensing fiber, which has been clearly proven by the experiment. The experimental results have shown that by using UWFBGs with 1.1 x 10-5 reflectivity and 10-m interval distance, the SNR is improved by 11 dB, and the load and vibration sensitivities of the POTDR are improved by about 10.7 and 9 dB, respectively.
Resumo:
I am afraid that I need to challenge the assertion made by Rachel Airley in her letter (PJ, 10 March 2012, p308) that “there is no clear cut evidence that UCAS points obtained at school have any bearing on final degree performance”. Research from the Higher Education Funding Council for England — the body responsible for the distribution of funding to universities in England — shows that educational attainment before entry to higher education (ie, A-level grades) is the most important factor in determining academic success on undergraduate degree programmes.1,2 Indeed, research I have recently conducted on a cohort of MPharm students at Aston University (which will hopefully be published in a peer-reviewed academic journal shortly) demonstrates a strong positive correlation between UCAS Tariff points per A-level and final degree classification. As Dr Airley highlights in her letter, competition for places on MPharm programmes remains fierce and, in response to high levels of demand, her own institution has increased its standard entry offer. If UCAS Tariff points have little predictive ability of performance on the MPharm programme then, aside from minimising the administrative burden that the admissions process places on an institution, what is the logic behind increasing standard entry offers?
Resumo:
Whole body vibration (WBV) aims to mechanically activate muscles by eliciting stretch reflexes. Mechanical vibrations are usually transmitted to the patient body standing on a oscillating plate. WBV is now more and more utilized not only for fitness but also in physical therapy, rehabilitation and in sport medicine. Effects depend on intensity, direction and frequency of vibration; however, the training frequency is one of the most important factors involved. A preliminary vibratory session can be dedicated to find the best vibration frequency for each subject by varying, stepwise, the stimulation frequency and analyzing the resulting EMG activity. This study concentrates on the analysis of muscle motion in response to a vibration frequency sweep, while subjects held two different postures. The frequency of a vibrating platform was increased linearly from 10 to 60 Hz in 26 s, while platform and single muscles (Rectus Femoris, Biceps Femoris - long head and Gastrocnemius Lateralis) motions were monitored using tiny, lightweight three-axial MEMS accelerometers. Displacements were estimated integrating twice the acceleration data after gravity contribution removal. Mechanical frequency response (amplitude and phase) of the mechanical chains ending at the single muscles was characterized. Results revealed a mechanical resonant-like behavior at some muscles, very similar to a second-order system in the frequency interval explored; resonance frequencies and dumping factors depended on subject and its positioning onto the vibrating platform. Stimulation at the resonant frequency maximizes muscle lengthening, and in turn muscle spindle solicitation, which produce muscle activation. © 2009 Springer-Verlag.
Resumo:
Through a lumped parameter modelling approach, a dynamical model, which can reproduce the motion of the muscles of a human body standing in different postures during Whole Body Vibrations (WBVs) treatment, has been developed. The key parameters, associated to the dynamics of the motion of the muscles of the lower limbs, have been identified starting from accelerometer measurements. The developed model can be usefully applied to the optimization of WBVs treatments which can effectively enhance muscle activation. © 2013 IEEE.
Resumo:
Whole Body Vibrations consist of a vibration stimulus mechanically transferred to the body. The impact of vibration treatment on specific muscular activity, neuromuscular, and postural control has been widely studied. We investigated whole body vibration (WBV) effect on oxygen uptake and electromyographic signal of the rectus femoris muscle during static and dynamic squat. Fourteen healthy subjects performed a static and dynamic squat with and without vibration. During the vibration exercises, a significant increase was found in oxygen uptake (P=0.05), which increased by 44% during the static squat and 29.4% during the dynamic squat. Vibration increased heart rate by 11.1 ± 9.1 beats.min-1 during the static squat and 7.9 ± 8.3 beats.min-1 during the dynamic squat. No significant changes were observed in rate of perceived exertion between the exercises with and without vibration. The results indicate that the static squat with WBV produced higher neuromuscular and cardiorespiratory system activation for exercise duration ?60 sec. Otherwise, if the single bout duration was higher than 60 sec, the greater cardiorespiratory system activation was achieved during the dynamic squat with WBV while higher neuromuscular activation was still obtained with the static exercise.
Resumo:
The impact of whole body vibrations (vibration stimulus mechanically transferred to the body) on muscular activity and neuromuscular response has been widely studied but without standard protocol and by using different kinds of exercises and parameters. In this study, we investigated how whole body vibration treatments affect electromyographic signal of rectus femoris during static and dynamic squat exercises. The aim was the identification of squat exercise characteristics useful to maximize neuromuscular activation and hence progress in training efficacy. Fourteen healthy volunteers performed both static and dynamic squat exercises without and with vibration treatments. Surface electromyographic signals of rectus femoris were recorded during the whole exercise and processed to reduce artifacts and to extract root mean square values. Paired t-test results demonstrated an increase of the root mean square values (p<0.05) in both static and dynamic squat exercises with vibrations respectively of 63% and 108%. For each exercise, subjects gave a rating of the perceived exertion according to the Borg's scale but there were no significant changes in the perceived exertion rate between exercises with and without vibration. Finally, results from analysis of electromyographic signals identified the static squat with WBV treatment as the exercise with higher neuromuscular system response. © 2012 IEEE.