936 resultados para Bayesian classifier
Resumo:
A Bayesian method of classifying observations that are assumed to come from a number of distinct subpopulations is outlined. The method is illustrated with simulated data and applied to the classification of farms according to their level and variability of income. The resultant classification shows a greater diversity of technical charactersitics within farm types than is conventionally the case. The range of mean farm income between groups in the new classification is wider than that of the conventional method and the variability of income within groups is narrower. Results show that the highest income group in 2000 included large specialist dairy farmers and pig and poultry producers, whilst in 2001 it included large and small specialist dairy farms and large mixed dairy and arable farms. In both years the lowest income group is dominated by non-milk producing livestock farms.
Resumo:
There has recently been increasing demand for better designs to conduct first-into-man dose-escalation studies more efficiently, more accurately and more quickly. The authors look into the Bayesian decision-theoretic approach and use simulation as a tool to investigate the impact of compromises with conventional practice that might make the procedures more acceptable for implementation. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
In this paper, Bayesian decision procedures are developed for dose-escalation studies based on bivariate observations of undesirable events and signs of therapeutic benefit. The methods generalize earlier approaches taking into account only the undesirable outcomes. Logistic regression models are used to model the two responses, which are both assumed to take a binary form. A prior distribution for the unknown model parameters is suggested and an optional safety constraint can be included. Gain functions to be maximized are formulated in terms of accurate estimation of the limits of a therapeutic window or optimal treatment of the next cohort of subjects, although the approach could be applied to achieve any of a wide variety of objectives. The designs introduced are illustrated through simulation and retrospective implementation to a completed dose-escalation study. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
Recently, various approaches have been suggested for dose escalation studies based on observations of both undesirable events and evidence of therapeutic benefit. This article concerns a Bayesian approach to dose escalation that requires the user to make numerous design decisions relating to the number of doses to make available, the choice of the prior distribution, the imposition of safety constraints and stopping rules, and the criteria by which the design is to be optimized. Results are presented of a substantial simulation study conducted to investigate the influence of some of these factors on the safety and the accuracy of the procedure with a view toward providing general guidance for investigators conducting such studies. The Bayesian procedures evaluated use logistic regression to model the two responses, which are both assumed to be binary. The simulation study is based on features of a recently completed study of a compound with potential benefit to patients suffering from inflammatory diseases of the lung.
Resumo:
In this paper, Bayesian decision procedures previously proposed for dose-escalation studies in healthy volunteers are reviewed and evaluated. Modifications are made to the expression of the prior distribution in order to make the procedure simpler to implement and a more relevant criterion for optimality is introduced. The results of an extensive simulation exercise to establish the proper-ties of the procedure and to aid choice between designs are summarized, and the way in which readers can use simulation to choose a design for their own trials is described. The influence of the value of the within-subject correlation on the procedure is investigated and the use of a simple prior to reflect uncertainty about the correlation is explored. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The aim of a phase H clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase H trial, although we assume that subsequent phase III clinical trials will hat,e standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi-drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The effectiveness of development assistance has come under renewed scrutiny in recent years. In an era of growing economic liberalisation, research organisations are increasingly being asked to account for the use of public funds by demonstrating achievements. However, in the natural resources (NR) research field, conventional economic assessment techniques have focused on quantifying the impact achieved rather understanding the process that delivered it. As a result, they provide limited guidance for planners and researchers charged with selecting and implementing future research. In response, “pathways” or logic models have attracted increased interest in recent years as a remedy to this shortcoming. However, as commonly applied these suffer from two key limitations in their ability to incorporate risk and assess variance from plan. The paper reports the results of a case study that used a Bayesian belief network approach to address these limitations and outlines its potential value as a tool to assist the planning, monitoring and evaluation of development-orientated research.
Resumo:
This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Niño-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Niño-3.4 index values over the period 1950–2001. Coupled model ensemble forecasts for the period 1987–99 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 1987–99. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.
Resumo:
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.
Resumo:
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.