936 resultados para Baterías Li-Ion
Resumo:
Within the independent particle model we solve the time-dependent single-particle equation using ab initio SCF-DIRAC-FOCK-SLATER wavefunctions as a basis. To reinstate the many-particle aspect of the collision system we use the inclusive probability formalism to answer experimental questions. As an example we show an application to the case of S{^15+} on Ar where experimental data on the K-K charge transfer are available for a wide range of impact energies from 4.7 to 90 MeV. Our molecular adiabatic calculations and the evaluation using the inclusive probability formalism show good results in the low energy range from 4.7 to 16 MeV impact energy.
Resumo:
The modification of the two center screened electronic Coulomb potential due to relativistic kinematical effects is investigated in the Coulomb gauge. Both nuclear and electronic charges were approximated by Gaussian distributions. For ion velocities v/c =0.1 the effect may roughly be approximated by a 0.1% increase in the effective strength for the monopole term of the two center potential. Thus for ion kinetic energies not exceeding a few MeV/nucleon this relativistic contribution induces small effects on the binding energy of the 1 \omega-electrons except for super critical charges.
Resumo:
Ab initio self-consistent DFS calculations are performed for five different symmetric atomic systems from Ar-Ar to Pb-Pb. The level structure for the {2p_\pi}-{2p_\sigma} crossing as function of the united atomic charge Z_u is studied and interpreted. Manybody effects, spin-orbit splitting, direct relativistic effects as well as indirect relativistic effects are differently important for different Z_u. For the I-I system a comparison with other calculations is given.
Resumo:
Using a relativistic selfconsistent correlation diagram a first interpretation of the shape and position of L MO X-rays is given within a quasi-adiabatic model.
Resumo:
Self-consistent-field calculations for the total potential energy of highly ionized N_2 molecules are presented. We compare these calculations to the experimentally observed energy released in the Coulomb explosion of ionized N_2 molecules created after collision with fast heavy ions. The most important electronic states of the fragment ions are determined.
Resumo:
The time dependence of a heavy-ion-atom collision system is solved via a set of coupled channel equations using energy eigenvalues and matrix elements from a self-consistent field relativistic molecular many-electron Dirac-Fock-Slater calculation. Within this independent particle model we give a full many-particle interpretation by performing a small number of single-particle calculations. First results for the P(b) curves for the Ne K-hole excitation for the systems F{^8+} - Ne and F{^6+} - Ne as examples are discussed.
Resumo:
Using the independent particle model as our basis we present a scheme to reduce the complexity and computational effort to calculate inclusive probabilities in many-electron collision system. As an example we present an application to K - K charge transfer in collisions of 2.6 MeV Ne{^9+} on Ne. We are able to give impact parameter-dependent probabilities for many-particle states which could lead to KLL-Auger electrons after collision and we compare with experimental values.
Resumo:
A realistic self-consistent charge correlation diagram calculation of the Kr{^2+} - Kr{^2+} system has been performed. We get excellent agreement for the 4(3/2)_u level with an experimentally observed MO level at large distances. Possible reasons for discrepancies between experiment and theory at small distances are discussed.
Resumo:
Due to the tremendous spin-orbit splitting of quasi-molecular levels in superheavy collision systems (Z = Z_1 + Z_2 {\ge\approx} 137) bombarding energy 0.5-6 MeV N{^-1}, unusual couplings may occur around Z \simeq 165. Experimental evidence for such a theoretically predicted coupling is discussed.
Resumo:
The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.
Resumo:
Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.
Resumo:
Augerelectron emission from foil-excited Ne-ions (6 to 10 MeV beam energy) has been measured. The beam-foil time-of-flight technique has been applied to study electronic transitions of metastable states (delayed spectra) and to determine their lifetimes. To achieve a line identification for the complex structure observed in the prompt spectrum, the spectrum is separated into its isoelectronic parts by an Augerelectron-ion coincidence correlating the emitted electrons and the emitting projectiles of well defined final charge states q_f. Well resolved spectra were obtained and the lines could be identified using intermediate coupling Dirac-Fock multiconfiguration calculations. From the total KLL-Augerelectron transition probabilities observed in the electronion coincidence experiment for Ne (10 MeV) the amount of projectiles with one K-hole just behind a C-target can be estimated. For foil-excited Ne-projectiles in contrast to single collision results the comparison of transition intensities for individual lines with calculated transition probabilities yields a statistical population of Li- and Be-like configurations.
Resumo:
Measurements of the Auger decay of beam-foil excited Be II and Be I levels are reported along with a proposed assignment of the experimental spectra. The Li I, Be II and Be III (1s 2s^2) ^2 S \rightarrow (1s^2 2s)^2 S Auger transitions as presented in this letter represents the first observation of such states in positive ions with Z \le 5.
Calculation of the hyperfine structure transition energy and lifetime in the one-electron Bi^82+ ion
Resumo:
We calculate the energy and lifetime of the ground state hyperfine structure transition in one-electron Bi^82+ . The influence of various distributions of the magnetic moment and the electric charge in the nucleus ^209_83 Bi on energy and lifetime is studied.
Resumo:
KLL-Auger transitions of the three electron system in Ne have been recorded in a coincidence experiment frec of contaminants from other systems. Energies as well as intensities are compared with calculated values.