1000 resultados para Baikal Drilling Project
Resumo:
The sediments recovered on Deep Sea Drilling Project Leg 54 appear to be mixtures of the normal pelagic sediments of the area and hydrothermally produced manganese and iron phases. The latter are mineralogically and chemically very similar to phases recovered from surficial sampling of the mounds. The hydrothermal nontronite which is approximately 15 meters thick in the three holes is essentially free of carbonate or detrital contaminants. The basal sediments are similar to the carbonate oozes presently being deposited in the region, but are enriched in Mn and Fe. This enrichment appears to be the result of hydrothermal deposition that took place at or near the spreading center and may not be associated with the mounds formation. Three different hypotheses for the formation of the nontronite layer and the mounds deposits are considered. An initial deposition of a widespread nontronite layer and subsequent diapiric-like movement of the layer into carbonates could account for the observed stratigraphy; however, if this be correct, analogous deposits should be present in other DSDP sites. The second hypothesis - replacement of the normal sediments by nontronite - may be feasible, but the high purity of the nontronite requires dissolution and removal of refractory elements. The third hypothesis, metal deposition in an advancing oxidation gradient, is compatible with submersible observations of the mounds; however, it can account only for the high purity of the nontronite by very rapid deposition of the hydrothermal phases.
Resumo:
Calcareous dinoflagellates often dominate the dinoflagellate cyst assemblage in Cretaceous to Recent oceanic sediments. However, their distribution in Paleogene sediments has scarcely been studied. The investigation of samples from DSDP Site 356 for their calcareous dinoflagellate content revealed 35 mainly long-ranging taxa. The associations and characteristic wall types (pithonelloid, oblique, radial, tangential) fluctuate quantitatively and qualitatively in distinct stratigraphic patterns. Significant shifts, primarily at the K/T boundary and the Paleocene/Eocene boundary, reflect changes in environmental conditions. Certain dinoflagellates forming calcareous cysts, such as Operculodinella operculata, were well adapted to the relatively rapid change of environmental conditions at the K/T boundary, thus blooming to dominate the carbonate flux to the ocean floor. In contrast to the stable Paleocene associations, Eocene calcareous dinoflagellates show fluctuations in relative abundances. These fluctuations can possibly be attributed to redeposition related to increased seaward transport of specimens, due to strengthened western boundary currents. The flora includes two new genera, one new species, and two new forms: Retesphaera diadema Hildebrand-Habel, Willems et Versteegh, gen. et. sp. nov., Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Sphaerodinella? tuberosa forma elongata Hildebrand-Habel, Willems et Versteegh, comb. et forma nov., Sphaerodinella? tuberosa forma variospinosa Hildebrand-Habel, Willems et Versteegh, comb. et forma nov. Three new combinations are proposed: Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Operculodinella operculata (Bramlette et Martini, 1964) Hildebrand-Habel, Willems et Versteegh, comb. nov., and Sphaerodinella? tuberosa (Kamptner, 1963) Hildebrand-Habel, Willems et Versteegh, comb. nov. The genus Operculodinella Kienel, 1994 is emended.
Resumo:
Late Eocene microtektites and crystal-bearing microkrystites extracted from DSDP and ODP cores from the Atlantic, Pacific, and Indian oceans have been analyzed to address their provenance. A new analysis of Nd and Sr isotopic compositions confirms previous work and the assignment of the uppermost microtektite layer to the North American tektites, which are associated with the 35.5 Ma, 85 km diameter Chesapeake impact structure of Virginia, USA. Extensive major element and Nd and Sr isotopic analyses of the microkrystites from the lowermost layer were obtained. The melanocratic microkrystites from Sites 216 and 462 in the Indian and Pacific oceans possess major element chemistries, Sr and Nd isotopic signatures and Sm-Nd, T CHUR, model ages similar to those of tagamite melt rocks in the Popigai impact structure. They also possess Rb-Sr, T UR, model ages that are younger than the tagamite TCHUR ages by up to ~1 Ga, which require a process, as yet undefined, of Rb/Sr enrichment. These melanocratic microkrystites are consistent with a provenance from the 35.7 Ma, 100 km diameter Popigai impact structure of Siberia, Russia, while ruling out other contemporaneous structures as a source. Melanocratic microkrystites from other sites and leucocratic microkrystites from all sites possess a wide range of isotopic compositions (epsilon (143Nd) values of -16 to -27.7 and epsilon (87Sr) values of 4.1-354.0), making the association with Popigai tagamites less clear. These microkrystites may have been derived by the melting of target rocks of mixed composition, which were ejected without homogenization. Dark glass and felsic inclusions extracted from Popigai tagamites possess epsilon (143Nd) and epsilon (87Sr) values of -26.7 to -27.8 and 374.7 and 432.4, respectively, and T CHUR and T UR model ages of 1640-1870 Ma and 240-1830 Ma, respectively, which require the preservation of initially present heterogeneity in the source materials. The leucocratic microkrystites possess diverse isotopic compositions that may reflect the melting of supra-basement sedimentary rocks from Popigai, or early basement melts that were ejected prior to homogenization of the Popigai tagamites. The ejection of melt rocks with chemistries consistent with a basement provenance, rather than the surface ~1 km of sedimentary cover rocks, atypically indicates a non-surficial source to some of the ejecta. Microkrystites from two adjacent biozones possess statistically indistinguishable major element compositions, suggesting they have a single source. The occurrence of microkrystites derived from a single impact event, but in different biozones, can be explained by: (1) diachronous biozone boundaries; (2) post-accumulation sedimentary reworking; or (3) erroneous biozonation.
Resumo:
Alkali-basalt clasts in Upper Cretaceous sediments from Site 466 on southern Hess Rise suggest that parts of Hess Rise were constructed by off-ridge volcanic activity. Apparently, tectonic adjustments at Hess Rise occurred during the Late Cretaceous (Campanian-Maastrichtian), when parts of the original volcanic pedestal were uplifted and provided source rocks for the clasts. Synchronous volcanism may have occurred. Causes for the Late Cretaceous tectonic adjustments (and volcanism?) are not known, but they may be related to intraplate movement along the Mendocino Fracture Zone.
Resumo:
The monograph gives results of studies of sediments and rocks collected from D/S Glomar Challenger in the Pacific Ocean. These studies have been based on the lithological facial analysis applied for the first time for identificating genesis of ocean sediments. These results include new ideas on formation of the Earth's sedimentary cover and can be used for constructing regional and global schemes of ocean paleogeography, reconstructing some structures, correlating sedimentation on continents and in oceans, estimating perspectives of oil- and gas-bearing deposits and ore formation. The monograph also gives the first petrographic classification of organic matter in black shales.
Resumo:
LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.
Resumo:
Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the d18O value of the smectite (27.2 ± 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with >=90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the d18O value of this clay mineral (27.1 ± 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
Bulk chemistry and trace elements data were measured in 72 samples, selected from 5 basement sections, which have been recovered by Leg 60 drilling (Sites 453, 454, 456, 458, and 459). According to analytical results a metagabbro- metabasalt breccia, deposited about 5 Ma at the westernmost flank of the Mariana Trough (Site 453), was derived from an island arc source. Basalts from the Mariana Trough (Sites 454 and 456) are similar in many respects to midoceanic ridge basalts (MORB). Yet rocks of unusual geochemistry, reflecting the possible influence of arc volcanism, were found among the pillow lavas at the easternmost trough (Site 456). The acoustic basement in the Mariana fore-arc region was formed by submarine eruptions of arc tholeiites (Sites 458 and 459) and peculiar high-MgO andesites related to the boninite suite.
Resumo:
Geochemical analyses of sediments from the top 24.5 m of Deep Sea Drilling Project hole 596 (23°51.20'S, 169°39.27'W) show great variability in the composition of pelagic clays accumulated in the South Pacific since the late Cretaceous. Elemental associations indicate that most of this variability can be attributed to variations in abundances of six sediment end-member components: detrital (eolian), andesitic (volcanic), hydrothermal, hydrogenous, phosphate (fish debris), and biogenic silica. We develop a sedimentation model which is used to infer processes that might have influenced the accumulation rates of these components over the last 85 million years. The accumulation of eolian detritus in the South Pacific shows some similarities to that observed in the North Pacific and has been largely controlled by global climate trends in the Cenozoic. Much of the variation in the accumulation of other sediment components likely reflects the paleoceanographic evolution of the South Pacific. The most notable change in the sedimentary environment occurred at about the Paleogene/Neogene boundary. At that time, significant changes in the color, mineralogy, and chemistry of the sediment probably reflect major shifts in climate mode as well as oceanic circulation in the central South Pacific region.
Resumo:
Core recovered from Hess Rise contains concentrations of pyrite, marcasite, and barite in the lowermost meter of limestone (Unit II) and in the brecciated upper part of the underlying volcanic basement (Unit HI). Petrographic and chemical data indicate that the sulfide-barite assemblage in the limestone is mainly a product of low-temperature diagenetic processes. The iron-sulfide phases are biogenic and their concentrations mark the diffusion of sea water sulfate through sedimentary horizons containing abundant organic matter and mafic, glassy volcanogenic detritus. There is some evidence, however, that elevated temperatures augmented or intensified the synsedimentary diagenetic process.
Resumo:
The tholeiitic basalts and microdolerites that comprise the Cretaceous igneous complex in the Nauru Basin in the western equatorial Pacific have moderate ranges in initial 87Sr/86Sr (0.70347 - 0.70356), initial 143Nd/144Nd (0.51278 - 0.51287), and measured 206Pb/204Pb (18.52 - 19.15), 207Pb/204Pb (15.48 - 15.66) and 208Pb/204Pb (38.28 - 38.81). These isotopic ratios overlap with those of both oceanic island basalts (OIB) and South Atlantic and Indian mid-ocean ridge basalts (MORB). However, the petrography, mineralogy, and bulk rock chemistry of the igneous complex are more similar to MORB than to OIB. Also, the rare earth element contents of Nauru Basin igneous rocks are uniformly depleted in light elements (La/Sm(ch) < 1) indicative of a mantle source compositionally similar to that of MORB. These results suggest that the igneous complex is the top of the original ocean crust in the Nauru Basin, and that the notion that the crust must be 15 to 35 m.y. older based on simple extrapolation and identification of the M-sequence magnetic lineations (Larson et al., 1981, doi:10.2973/dsdp.proc.61.1981; Moberly et al., 1985, doi:10.2973/dsdp.proc.81.1984) may be invalid because of a more complicated tectonic setting. The igneous complex most probably was extruded from an ocean ridge system located near the anomalously hot, volcanically active, and isotopically distinct region in the south central Pacific which has been in existence since c. 120 Ma.
Resumo:
Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb (206Pb/204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd/144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.
Resumo:
Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.