961 resultados para BRAIN-STEM MECHANISMS
Resumo:
Genetic and environmental factors interact to influence vulnerability for internalizing psychopathology, including Major Depressive Disorder (MDD). The mechanisms that account for how environmental stress can alter biological systems are not yet well understood yet are critical to develop more accurate models of vulnerability and targeted interventions. Epigenetic influences, and more specifically, DNA methylation, may provide a mechanism by which stress could program gene expression, thereby altering key systems implicated in depression, such as frontal-limbic circuitry and its critical role in emotion regulation. This thesis investigated the role of environmental factors from infancy and throughout the lifespan affecting the serotonergic (5-HT) system in the vulnerability to and treatment of depression and anxiety and potential underlying DNA methylation processes. First, we investigated the contributions of additive genetic vs. environmental factors on an early trait phenotype for depression (negative emotionality) in infants and their stability over time in the first 2 years of life. We provided evidence of the substantial contributions of both genetic and shared environmental factors to this trait, as well as genetically- and environmentally- mediated stability and innovation. Second, we studied how childhood environmental stress is associated with peripheral DNA methylation of the serotonin transporter gene, SLC6A4, as well as long-term trajectories of internalizing behaviours. There was a relationship between childhood psychosocial adversity and SLC6A4 methylation in males, as well as between SLC6A4 methylation and internalizing trajectory in both sexes. Third, we investigated changes in emotion processing and epigenetic modification of the SLC6A4 gene in depressed adolescents before and after Mindfulness-Based Cognitive Therapy (MBCT). The alterations from pre- to post-treatment in connectivity between the ACC and other network regions and SLC6A4 methylation suggested that MBCT may work to optimize the connectivity of brain networks involved in cognitive control of emotion as well as also normalize the relationship between SLC6A4 methylation and activation patterns in frontal-limbic circuitry. Our results from these three studies strengthen the theory that environmental influences are critical in establishing early vulnerability factors for MDD, driving epigenetic processes, and altering brain processes as an individual undergoes treatment, or experiences relapse.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In the first part of this thesis, the oncogenic potential of TCL1A family genes was comparatively evaluated by using gamma-retroviral vectors to introduce human TCL1A, MTCP1, and TML1 into hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC) of wild type mice that were transplanted into wild type recipients. TCL1A and MTCP1 recipient mice predominantly developed B-cell malignancies after a median survival of 388 days and 394 days, respectively. The presented data indicates that TCL1A and MTCP1 are oncogenes with comparable oncogenic potential and shows for the first time that MTCP1 is not only a T-cell oncogene, but is able to transform B cells as well. The third family member TML1 induced the development of immature T-cell malignancies in only a few mice. This study provides first evidence for its oncogenic function. Additionally, the transforming potential of compartment-targeted TCL1A variants was evaluated by retroviral expression of a membrane localizing myristoylated (myr-TCL1A) and a nuclear localizing (nls-TCL1A) variant. Recipients of HSC/HPC transduced with myr-TCL1A and nls-TCL1A predominantly developed B-cell malignancies after a median survival of 360 days and 349 days, respectively. There was a significantly shorter latency period for nls-TCL1A compared to the previously described generic TCL1A. Gene expression analysis revealed higher similarities between expression profiles of tumors induced by TCL1A and nls-TCL1A. Together these data implicate that TCL1A’s predominant oncogenic function might rely on its nuclear presence. The second part of this thesis aims to understand if and how TCR stimulation affects the transforming potential of TCL1A. Mature OT-1 T cells carrying monoclonal TCR’s that specifically recognize ovalbumin (OVA) were retrovirally transduced with TCL1A and repeatedly stimulated in vivo with OVA-peptides. TCR stimulated recipient mice of TCL1A transduced T cells showed a significantly accelerated leukemic outgrowth and a reduced median survival of 305 days, when compared to unstimulated recipients (417 days). These data strongly implicate a pro-leukemogenic cooperation of TCL1A and TCR signals that might be actionable in upcoming interventional designs.
Resumo:
Adoptive immunotherapy and oncolytic virotherapy are two promising strategies for treating primary and metastatic malignant brain tumors. We demonstrate the ability of adoptively transferred tumor-specific T cells to rapidly mediate the clearance of established brain tumors in several mouse models. Similar to the clinical situation, tumor recurrences are frequent and result from immune editing of tumors. T cells can eliminate antigen-expressing tumor cells but are not effective against antigen loss variant (ALV) cancer cells that multiply and repopulate a tumor. We show that the level of tumor antigen present affects the success of adoptive T cell therapy. When high levels of antigen are present, tumor stromal cells such as microglia and macrophages present tumor peptide on their surface. As a result, T cells directly eliminate cancer cells and cross-presenting stromal cells and indirectly eliminate ALV cells. We were able to show the first direct evidence of tumor antigen cross-presentation by CD11b+ stromal cells in the brain using soluble, high-affinity T cell receptor monomers. Strategies that target brain tumor stroma or increase antigen shedding from tumor cells leading to increased crosspresentation by stromal cells may improve the clinical success of T cell adoptive therapies. We evaluated one potential strategy to complement adoptive T cell therapy by characterizing the oncolytic effects of myxoma virus (MYXV) in a syngeneic mouse brain tumor model of metastatic melanoma. MYXV is a rabbit poxvirus with strict species tropism for European rabbits. MYXV can also infect mouse and human cancer cell lines due to signaling defects in innate antiviral mechanisms and hyperphosphorylation of Akt. MYXV kills B16.SIY melanoma cells in vitro, and intratumoral injection of virus leads to robust, selective and transient infection of the tumor. We observed that virus treatment recruits innate immune cells iii to the tumor, induces TNFα and IFNβ production in the brain, and results in limited oncolytic effects in vivo. To overcome this, we evaluated the safety and efficacy of co-administering 2C T cells, MYXV, and neutralizing antibodies against IFNβ. Mice that received the triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Based on these findings, methods to enhance viral replication in the tumor and limit immune clearance of the virus will be pursued. We conclude that myxoma virus should be further explored as a vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.
Resumo:
International audience
Resumo:
Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.
Resumo:
O presente artigo contém uma errata, disponível em: http://www.tandfonline.com/doi/full/10.1080/15294145.2015.1108503
Resumo:
The potential application for stem cell therapy is vast, and development for use in ischaemic stroke is still in its infancy. Access to stem cells for research is contentious; however, stem cells are obtainable from both animal and human. Despite a limited understanding of their mechanisms of action, clinical trials assessing stem cells in human stroke have been performed. Trials are also underway evaluating haematopoietic precursors mobilised with granulocyte-colony stimulating factor, an approach offering an autologous means of administrating stem cells for therapeutic purposes. This review summarises current knowledge in regard to stem cells and their potential for helping improve recovery after stroke.
Resumo:
Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Genus dolichocarpa and Duguetia chrysocarpa - two species of the Annonaceae family. Methods: The crude ethanol bark extracts (EtOH) of the plants were obtained by maceration. The crude extracts were suspended in a mixture of methanol (MeOH) and water (H2O) (proportion 3:7 v/v) and partitioned with hexane, chloroform (CHCl3) and ethyl acetate (AcOEt) in ascending order of polarity to obtain the respective fractions. The extracts were evaluated on thin layer chromatography (TLC) plates of silica gel to highlight the main groups of secondary metabolites. Cytotoxicity was tested against human tumor cell lines - OVCAR-8 (ovarian), SF-295 (brain) and HCT-116 (colon) - using 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results: The screening results demonstrated that all the extracts were positive for the presence of flavonoids and tannins. The presence of alkaloids also was detected in some extracts. The hexane extract of A. dolichocarpa showed the strongest cytotoxicity against HCT-116 with cell growth inhibition of 89.02 %. Conclusion: The findings demonstrate for the first time the cytotoxic activity of the extracts of A. dolichocarpa and D. chrysocarpa, thus providing some evidence that plants of the Annonaceae family are a source of active secondary metabolites with cytotoxic activity.
Resumo:
I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. ^ In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. ^ In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.^
Resumo:
Mesenchymal stem cells (MSCs) have been used in cell replacement therapies for connective tissue damage, but also can stimulate wound healing through paracrine activity. In order to further understand the potential use of MSCs to treat dogs with neurological disorders, this study examined the paracrine action of adipose-derived canine MSCs on neuronal and endothelial cell models. The culture-expanded MSCs exhibited a MSC phenotype according to plastic adherence, cell morphology, CD profiling and differentiation potential along mesenchymal lineages. Treating the SH-SY5Y neuronal cell line with serum-free MSC culture-conditioned medium (MSC CM) significantly increased SH-SY5Y cell proliferation (P < 0.01), neurite outgrowth (P = 0.0055) and immunopositivity for the neuronal marker βIII-tubulin (P = 0.0002). Treatment of the EA.hy926 endothelial cell line with MSC CM significantly increased the rate of wound closure in endothelial cell scratch wound assays (P = 0.0409), which was associated with significantly increased endothelial cell proliferation (P < 0.05) and migration (P = 0.0001). Furthermore, canine MSC CM induced endothelial tubule formation in EA.hy926 cells in a soluble basement membrane matrix. Hence, this study has demonstrated that adipose-derived canine MSC CM stimulated neuronal and endothelial cells probably through the paracrine activity of MSC-secreted factors. This supports the use of canine MSC transplants or their secreted products in the clinical treatment of dogs with neurological disorders and provides some insight into possible mechanisms of action.
Resumo:
Thesis (Ph.D, Psychology) -- Queen's University, 2016-10-04 17:37:07.888
Resumo:
Sepsis is commonly associated with brain dysfunction, but the underlying mechanisms remain unclear, although mitochondrial dysfunction and microvascular abnormalities have been implicated. We therefore assessed whether cerebral mitochondrial dysfunction during systemic endotoxemia in mice increased mitochondrial sensitivity to a further bioenergetic insult (hyoxemia), and whether hypothermia could improve outcome. Mice (C57bl/6) were injected intraperitoneally with lipopolysaccharide (LPS) (5 mg/kg; n = 85) or saline (0.01 ml/g; n = 47). Six, 24 and 48 h later, we used confocal imaging in vivo to assess cerebral mitochondrial redox potential and cortical oxygenation in response to changes in inspired oxygen. The fraction of inspired oxygen (FiO2) at which the cortical redox potential changed was compared between groups. In a subset of animals, spontaneous hypothermia was maintained or controlled hypothermia induced during imaging. Decreasing FiO2 resulted in a more reduced cerebral redox state around veins, but preserved oxidation around arteries. This pattern appeared at a higher FiO2 in LPS-injected animals, suggesting an increased sensitivity of cortical mitochondria to hypoxemia. This increased sensitivity was accompanied by a decrease in cortical oxygenation, but was attenuated by hypothermia. These results suggest that systemic endotoxemia influences cortical oxygenation and mitochondrial function, and that therapeutic hypothermia can be protective.
Resumo:
Obesity affects the functional capability of adipose-derived stem cells (ASCs) and their effective use in regenerative medicine through mechanisms still poorly understood. Here we employed a multiplatform (LC/MS, CE/MS, GC/MS) metabolomics untargeted approach to investigate the metabolic alteration underlying the inequalities observed in obese-derived ASCs. The metabolic fingerprint (metabolites within the cells) and footprint (metabolites secreted in the culture medium) from humans or mice, obese and non-obese derived ASCs, were characterized by providing valuable information. Metabolites associated to glycolysis, TCA, pentose phosphate pathway and polyol pathway were increased in the footprint of obese-derived human ASCs indicating alterations in the carbohydrate metabolism; whereas from the murine model, deep differences in lipid and amino acid catabolism were highlighted. Therefore, new insights on the ASCs metabolome were provided that enhance our understanding of the processes underlying the ASCs stemness capacity and its relationship with obesity, in different cell models.