1000 resultados para BOHAI-SEA
Resumo:
AMS(14)C dating and analysis of grain size, major elements and clay minerals were applied to Core MZ01 from the mud area on the inner shelf of the East China Sea. Based on the environmentally sensitive grain size, clay mineral and major element assemblages, the history of the East Asia winter monsoon since the mid-Holocene could be reconstructed. These three proxies, mean grain size (>9.71 mu m), chemical index of alteration (CIA) and ratio of smectite to kaolinite in particular, show similar fluctuation patterns. Furthermore, 10 extreme values corresponding to the contemporary cooling events could be recognized since the mid-Holocene; these extreme values are likely to have been caused by the strengthening of the East Asia winter monsoon. The cooling events correlated well with the results of the delta O-18 curves of the Dunde ice core and GISP2, which therefore revealed a regional response to global climate change. Four stages of the East Asia winter monsoon were identified, i.e. 8300-6300 a BP, strong and unstable; 6300-3800 a BP, strong but stable; 3800-1400 a BP, weak and unstable; after 1400 a BP, weak but stable.
Resumo:
128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since I Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
AMS(14)C dating and grain-size analysis for Core PC-6, located in the middle of a mud area on the inner shelf of the East China Sea (ECS), were used to rebuild the Holocene history of the East Asian winter monsoon (EAWM). The 7.5-m core recorded the history of environmental changes during the postglacial transgression. The core's mud section (the upper 450 cm) has been formed mainly by suspended sediment delivered from the Yangtze River mouth by the ECS Winter Coastal Current (ECSWCC) since 7.6 kyr BP. Using a mathematical method called "grain size vs. standard deviatioW', we can divide the Core PC-6's grain-size distribution into two populations at about 28 mu m. The fine population (< 28 mu m) is considered to be transported by the ECSWCC as suspended loads. Content of the fine population changes little and represents a stable sedimentary environment in accord with the present situation. Thus, variation of mean grain-size from the fine population would reflect the strength of ECSWCC, which is mainly controlled by the East Asian winter monsoon. Abrupt increasing mean grain size in the mud section is inferred to be transported by sudden strengthened ECSWCC, which was caused by the strengthened EAWM. Thus, the high resolution mean grain-size variation might serve as a proxy for reconstruction of the EAWM. A good correlation between sunspot change and the mean grain-size of suspended fine population suggests that one of the primary controls on centennial- to decadal-scale changes of the EAWM in the past 8 ka is the variations of sun irradiance, i.e., the EAWM will increase in intensity when the number of sunspots decreases. Spectral analyses of the mean grain-size time series of Core PC-6 show statistically significant periodicities centering on 2463, 1368, 128, 106, 100, 88-91, 7678, and 70-72 years. The EAWM and the East Asian summer monsoon (EASM) agree with each other well on these cycles, and the East Asian Monsoon (EAM) and the Indian Monsoon also share in concurrent cycles in Holocene, which are in accord with the changes of the sun irradiance. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.
Resumo:
The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.
Resumo:
We dredged lots of Cenozoic basalts from areas covered from the northern sub-slope to the southern sub- slope of the South China Sea. Based on the study on mineral chemistry of clinopyroxenes in these Cenozoic hasalts, this paper indicates that pyroxenes are mostly enstatite and a few of augite, sahlite and Ca-rich pyroxene. Pyroxene microlite has higher content in, Ca, Ti and Fe than pyroxene phenocryst, it may reflect that the evolution trend of host magma of pyroxene is coincidence with that of alkali rock series. The depth of magma chambers which calculated from equilibrium temperatures and pressures between clinopyroxene and melt are as follows, that of magma of tephrite is about 49km, that of magma of trachybasalt is about 25km, and that of magma of basalt is about 15km. Correspondingly, Equilibrium temperatures( K) of three types rocks mentioned above gradually decrease from 1535 1498 to 1429 to 1369. By using discriminant plot which developed from pyroxene and alkali discriminant diagram of host rock, Cenozoic basalt from the South China Sea belongs to intraplate alkali basalt. The results suggest that alkali basalt series in the study area may be the products of continuous evolution of mantle plume, which result from some physical and chemistry process including partial melting and fractional crystallization of mantle plume during the course of its ascent to the surface.
Resumo:
According to the environmental characteristic of the north gulf of South China Sea, a quasi-3D mechanics model has been built for simulating the small scale sand-waves migration in the seas of southwest of Hainan Island. Based on the submarine micro-geomorphic data induced by multi-beam system and hydrographic survey record, the migrations of the sand-waves in the study area are predicted. The results show that calculation is consistent with the observation data in the groove of sand ridge, but not well in the crest of sand ridge. It is indicated that the mechanics model should be used to predict the migration of the small scale sand-waves which are dominated by bed load in the seas. This paper is very meaningful to project the route of submarine pipeline.
Resumo:
The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.
Resumo:
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957-1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46A degrees C higher during the period of 1977-1996 than that of 1957-1976, and the Taiwan Warm Current Water (TWCW) was strengthened. In winter, despite of the cooling effect in the coastal areas adjacent to the Changjiang (Yangtze) River Estuary (CRE), the average SST increase was about 0.53A degrees C during the same period. The causes of this SST warming up in summer are different from in winter. The warming trend and intensification of the TWCW in summer were primarily influenced by the strengthening of the Kuroshio transport, while the warming in winter was mainly induced by the variability of the climate system.
Resumo:
Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.
Resumo:
We detected the responses of summertime extreme wave heights (H-top10, average of the highest 10% of significant wave heights in June, July and August) to local climate variations in the East China Sea by applying an empirical orthogonal function analysis to Htop10 derived from the WAVEWATCH- III wave model driven by 6 hourly sea surface wind fields from ERA-40 reanalysis over the period 1958-2002. Decreases in H-top10 in the northern East China Sea ( Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.
Resumo:
Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997-98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.
Resumo:
We used fifteen years (1993-2007) of altimetric data, combined from different missions (ERS-1/2, TOPEX/Poseidon, Jason-1, and Envisat), to analyze the variability of the eddy kinetic energy (EKE) in the South China Sea (SCS). We found that the EKE ranged from 64 cm(2)/s(2) to 1 390 cm(2)/s(2) with a mean value of 314 cm(2)/s(2). The highest EKE center was observed to the east of Vietnam (with a mean value of 509 cm(2)/s(2)) and the second highest EKE region was located to the southwest of Taiwan Island (with a mean value of 319 cm(2)/s(2)). We also found that the EKE structure is the consequence of the superposition of different variability components. First, interannual variability is important in the SCS. Spectral analysis of the EKE interannual signal (IA-EKE) shows that the main periodicities of the IA-EKE to the east of Vietnam, to the southwest of Taiwan Island, and in the SCS are 3.75, 1.87, and 3.75 years, respectively. It is to the south of Taiwan Island that the IA-EKE signal has the most obvious impact on EKE variability. In addition, the IA-EKE exhibit different trends in different regions. An obvious positive trend is observed along the east coast of Vietnam, while a negative trend is found to the southwest of Taiwan Island and in the east basin of Vietnam. Correlation analysis shows that the IA-EKE has an obvious negative correlation with the SSTA in Nio3 (5A degrees S-5A degrees N, 90A degrees W-150A degrees W). El Nio-Southern Oscillation (ENSO) affects the IA-EKE variability in the SCS through an atmospheric bridge-wind stress curl over the SCS. Second, the seasonal cycle is the most obvious timescale affecting EKE variability. The locations of the most remarkable EKE seasonal variabilities in the SCS are to the east of Vietnam, to the southwest of Taiwan, and to the west of Philippines. To the east of Vietnam, the seasonal cycle is the dominant mechanism controlling EKE variability, which is attributed primarily to the annual cycle there of wind stress curl. In this area, the maximum EKE is observed in autumn. To the southwest of Taiwan Island, the EKE is enlarged by the stronger SCS circulation, which is caused by the intrusion branch from the Kuroshio in winter. Finally, intra-annual and mesoscale variability, although less important than the former, cannot be neglected. The most obvious intra-annual and mesoscale variability, which may be the result of baroclinic instability of the background flow, are observed to the southwest of Taiwan Island. Sporadic events can have an important effect on EKE variability.