932 resultados para BLOCK-COPOLYMER MICELLES
Resumo:
Using three different types of yaks, 30 head of 1-yr-old calves (liveweight 60.7 +/- 6.3 kg), 30 head of 2-yr-old calves (97.7 +/- 10.2 kg) and 30 head of yak cows (160.2 +/- 15.1 kg) were randomly selected from the same yak herds. Each type of yak herd was divided into control (C) and trial (T) groups using a completely randomized design, with 10 and 20 animals in the C and T groups, respectively. The animals in the C group were grazed on natural rangeland, and the animals in the T group were supplemented with urea multinutritional molasses blocks (UMMB), together with grazing on natural rangeland from January to May of 1998. The objective was to determine the effect of UMMB on productive performance of yak calves and yak cows in the cold season. Live weight loss of 1-yr-old calves, 2-yr-old calves and yak cows was reduced by 1.2, 8.3 and 7.9 kg after UMMB supplementation (P < 0.01). The 1-yr-old calves gained the most in the first month of supplementation, but the 2-yr-old calves and yak cows gained the most both in the first and last supplementation months. Daily milk yield of yak cows increased by 0.21 kg d(-1) when the lactating animals were supplemented with UMMB (P < 0.01), although there was no effect (P < 0.01) of UMMB supplementation on hair and downy hair production. Supplementation with UMMB also improved reproductive performance of yak cows, with 8.8 and 30.9% increments in pregnancy rate and newborn weight, respectively. We conclude that the benefit of UMMB supplementation the 1-yr-old calves was not economical, with only 0.3:1 output to input ratio, but supplementation of the 2-yr-old calves and yak cows may be economical, with 1.8:1 and 1.4:1 output to input ratios, respectively.
Resumo:
In this study, a carboxymethyl cellulose (CMC)-mediated sol-gel process was developed to synthesize the alumina hydoxide whiskers. During the process, inexpensive inorganic salts were used as precursors and supercritical drying method was used to extract the water in hydrogel. The influences of CMC on the gel formation and the particle morphology were investigated. The results show that the formation of CMC-aluminium hydroxide organic-inorganic hybridgels led to a morphology transcription process from CMC micelles to aluminium hydroxide gel, as a result, the precursor with whiskerious morphology was obtained.
Resumo:
3.050 JCR (2013) Q2, 44/125 Cardiac & cardiovascular systems
Resumo:
B.M. Brown, M. Marletta, S. Naboko, I. Wood: Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc., June 2008; 77: 700-718. The full text of this article will be made available in this repository in June 2009 Sponsorship: EPSRC,INTAS
Resumo:
Purpose – To consider the economic and physical impact of electronic journals on remotely stored print stock. Design/methodology/approach – A collection of print journals was used as an object for consideration. Physical and heritage aspects of the collection are examined and questions are posed regarding the wisdom of future retention in response to increased demand for electronic alternatives. Findings – Emerging trends predict a predominance of periodical literature in electronic form. The future of local remote storage for low demand printed journal collections needs to be evaluated in economic as well as cultural terms. Research limitations/implications – Based on a collection at the Boole Library, University College Cork, Ireland. Practical implications – Similar consideration should be given to collections in other regional libraries. Originality/value – Contributes to discussions on the long-term value of retaining print journal holdings.
Resumo:
Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.
Resumo:
Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications.
Resumo:
Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.
Resumo:
This study, "Civil Rights on the Cell Block: Race, Reform, and Violence in Texas Prisons and the Nation, 1945-1990," offers a new perspective on the historical origins of the modern prison industrial complex, sexual violence in working-class culture, and the ways in which race shaped the prison experience. This study joins new scholarship that reperiodizes the Civil Rights era while also considering how violence and radicalism shaped the civil rights struggle. It places the criminal justice system at the heart of both an older racial order and within a prison-made civil rights movement that confronted the prison's power to deny citizenship and enforce racial hierarchies. By charting the trajectory of the civil rights movement in Texas prisons, my dissertation demonstrates how the internal struggle over rehabilitation and punishment shaped civil rights, racial formation, and the political contest between liberalism and conservatism. This dissertation offers a close case study of Texas, where the state prison system emerged as a national model for penal management. The dissertation begins with a hopeful story of reform marked by an apparently successful effort by the State of Texas to replace its notorious 1940s plantation/prison farm system with an efficient, business-oriented agricultural enterprise system. When this new system was fully operational in the 1960s, Texas garnered plaudits as a pioneering, modern, efficient, and business oriented Sun Belt state. But this reputation of competence and efficiency obfuscated the reality of a brutal system of internal prison management in which inmates acted as guards, employing coercive means to maintain control over the prisoner population. The inmates whom the prison system placed in charge also ran an internal prison economy in which money, food, human beings, reputations, favors, and sex all became commodities to be bought and sold. I analyze both how the Texas prison system managed to maintain its high external reputation for so long in the face of the internal reality and how that reputation collapsed when inmates, inspired by the Civil Rights Movement, revolted. My dissertation shows that this inmate Civil Rights rebellion was a success in forcing an end to the existing system but a failure in its attempts to make conditions in Texas prisons more humane. The new Texas prison regime, I conclude, utilized paramilitary practices, privatized prisons, and gang-related warfare to establish a new system that focused much more on law and order in the prisons than on the legal and human rights of prisoners. Placing the inmates and their struggle at the heart of the national debate over rights and "law and order" politics reveals an inter-racial social justice movement that asked the courts to reconsider how the state punished those who committed a crime while also reminding the public of the inmates' humanity and their constitutional rights.
Resumo:
Analysis of the generic attacks and countermeasures for block cipher based message authentication code algorithms (MAC) in sensor applications is undertaken; the conclusions are used in the design of two new MAC constructs Quicker Block Chaining MAC1 (QBC-MAC1) and Quicker Block Chaining MAC2 (QBC-MAC2). Using software simulation we show that our new constructs point to improvements in usage of CPU instruction clock cycle and energy requirement when benchmarked against the de facto Cipher Block Chaining MAC (CBC-MAC) based construct used in the TinySec security protocol for wireless sensor networks.
Resumo:
A zone based systems design framework is described and utilised in the implementation of a message authentication code (MAC) algorithm based on symmetric key block ciphers. The resulting block cipher based MAC algorithm may be used to provide assurance of the authenticity and, hence, the integrity of binary data. Using software simulation to benchmark against the de facto cipher block chaining MAC (CBC-MAC) variant used in the TinySec security protocol for wireless sensor networks and the NIST cipher block chaining MAC standard, CMAC; we show that our zone based systems design framework can lead to block cipher based MAC constructs that point to improvements in message processing efficiency, processing throughput and processing latency.