972 resultados para Avaliação temporal
Resumo:
Seasonal trawling was conducted randomly in coastal (depths of 4.6–17 m) waters from St. Augustine, Florida, (29.9°N) to Winyah Bay, South Carolina (33.1°N), during 2000–03, 2008–09, and 2011 to assess annual trends in the relative abundance of sea turtles. A total of 1262 loggerhead sea turtles (Caretta caretta) were captured in 23% (951) of 4207 sampling events. Capture rates (overall and among prevalent 5-cm size classes) were analyzed through the use of a generalized linear model with log link function for the 4097 events that had complete observations for all 25 model parameters. Final models explained 6.6% (70.1–75.0 cm minimum straight-line carapace length [SCLmin]) to 14.9% (75.1–80.0 cm SCLmin) of deviance in the data set. Sampling year, geographic subregion, and distance from shore were retained as significant terms in all final models, and these terms collectively accounted for 6.2% of overall model deviance (range: 4.5–11.7% of variance among 5-cm size classes). We retained 18 parameters only in a subset of final models: 4 as exclusively significant terms, 5 as a mixture of significant or nonsignificant terms, and 9 as exclusively nonsignificant terms. Four parameters also were dropped completely from all final models. The generalized linear model proved appropriate for monitoring trends for this data set that was laden with zero values for catches and was compiled for a globally protected species. Because we could not account for much model deviance, metrics other than those examined in our study may better explain catch variability and, once elucidated, their inclusion in the generalized linear model should improve model fits.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.
Resumo:
We report a Monte Carlo representation of the long-term inter-annual variability of monthly snowfall on a detailed (1 km) grid of points throughout the southwest. An extension of the local climate model of the southwestern United States (Stamm and Craig 1992) provides spatially based estimates of mean and variance of monthly temperature and precipitation. The mean is the expected value from a canonical regression using independent variables that represent controls on climate in this area, including orography. Variance is computed as the standard error of the prediction and provides site-specific measures of (1) natural sources of variation and (2) errors due to limitations of the data and poor distribution of climate stations. Simulation of monthly temperature and precipitation over a sequence of years is achieved by drawing from a bivariate normal distribution. The conditional expectation of precipitation. given temperature in each month, is the basis of a numerical integration of the normal probability distribution of log precipitation below a threshold temperature (3°C) to determine snowfall as a percent of total precipitation. Snowfall predictions are tested at stations for which long-term records are available. At Donner Memorial State Park (elevation 1811 meters) a 34-year simulation - matching the length of instrumental record - is within 15 percent of observed for mean annual snowfall. We also compute resulting snowpack using a variation of the model of Martinec et al. (1983). This allows additional tests by examining spatial patterns of predicted snowfall and snowpack and their hydrologic implications.
Resumo:
The spatial and temporal occurrence of Atlantic bottlenose dolphins (Tursiops truncatus) in the coastal and estuarine waters near Charleston, SC were evaluated. Sighting and photographic data from photo-identification (ID), remote biopsy, capture-release and radio-tracking studies, conducted from 1994 through 2003, were analyzed in order to further delineate residence patterns of Charleston area bottlenose dolphins. Data from 250 photo-ID, 106 remote biopsy, 15 capture-release and 83 radio-tracking surveys were collected in the Stono River Estuary (n = 247), Charleston Harbor (n = 86), North Edisto River (n = 54), Intracoastal Waterway (n = 26) and the coastal waters north and south of Charleston Harbor (n = 41). Coverage for all survey types was spatially and temporally variable, and in the case of biopsy, capture-release and radio-tracking surveys, data analyzed in this report were collected incidental to other research. Eight-hundred and thirty-nine individuals were photographically identified during the study period. One-hundred and fifteen (13.7%) of the 839 photographically identified individuals were sighted between 11-40 times, evidence of consistent occurrence in the Charleston area (i.e., site fidelity). Adjusted sighting proportions (ASP), which reflect an individual’s sighting frequency in a subarea relative to other subareas after adjusting for survey effort, were analyzed in order to evaluate dolphin spatial occurrence. Forty-three percent (n = 139) of dolphins that qualified for ASP analyses exhibited a strong subarea affiliation while the remaining 57% (n = 187) showed no strong subarea preference. Group size data were derived from field estimates of 2,342 dolphin groups encountered in the five Charleston subareas. Group size appeared positively correlated with degree of “openness” of the body of water where dolphins were encountered; and for sightings along the coast, group size was larger during summer months. This study provides valuable information on the complex nature of bottlenose dolphin spatial and temporal occurrence near Charleston, SC. In addition, it helps us to better understand the stock structure of dolphins along the Atlantic seaboard.
Resumo:
This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1
Resumo:
Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.
Resumo:
Since 1999, NOAA’s Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) has been working with federal and territorial partners to characterize monitor and assess the status of the marine environment in southwestern Puerto Rico. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort of the La Parguera region in southwestern Puerto Rico was conducted through partnerships with the University of Puerto Rico (UPR) and the Puerto Rico Department of Natural and Environmental Resources (DNER). Project funding was primarily provided by NOAA CRCP and CCMA. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem in the La Parguera region have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a suite of hurricanes, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem several activities are underway or have been implemented to manage the marine resources. These efforts have been supported by the CREM project by identifying marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first seven years of fish survey data (2001-2007) and associated characterization of the benthos. The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure across the seascape including fringing mangroves, inner, middle, and outer reef areas, and open ocean shelf bank areas.
Resumo:
Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs.