981 resultados para Auriferous mineralization
Resumo:
The Carrabassett Valley Sanitary District in Carrabassett Valley, Maine has utilized both a forest spray irrigation system and a Snowfluent™ system for the treatment of their wastewater effluent. This study was designed to evaluate potential changes in soil properties after approximately 20 years of treatment in the forested spray irrigation site and three years of treatment in the field Snowfluent™ site. In addition, grass yield and composition were evaluated on the field study sites. After treatment with effluent or Snowfluent™, soils showed an increase in soil exchangeable Ca, Mg, Na, and K, base saturation, and pH. While most constituents were higher in treated soils, available P was lower in treated soils compared to the controls. This difference was attributed to higher rates of P mineralization from soil organic matter due to an irrigation effect of the treatment, depleting available P pools despite the P addition with the treatment. Most of the differences due to treatment were greatest at the surface and diminished with depth. Depth patterns in soil properties mostly reflected the decreasing influence of organic matter and its decomposition products with depth as evidenced by significantly higher total C in the surface compared to lower horizons. There were decreasing concentrations of total N, and exchangeable or extractable Ca, Mg, Na, K, Mn, Zn, and P with depth. In addition, there was decreasing BS with depth, driven primarily by declining exchangeable Ca and Mg. Imgation with Snowfluent™ altered the chemical composition of the grass on the site. All element concentrations were significantly higher in the grass foliage except for Ca. The differences were attributed to the additional nutrients and moisture derived from the Snowfluent™. The use of forest spray imgation and Snowfluent™ as a wastewater treatment strategy appears to work well. The soil and vegetation were able to retain most of the applied nutrients, and do not appear to be moving toward saturation. Vegetation management may be a key tool for managing nutrient accumulation on the grass sites as the system ages.
Resumo:
The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^
Resumo:
It is generally believed that 1,25(OH)2D3, bound to its receptor (VDR) contributes to calcium homeostasis by regulating active calcium absorption in the proximal small intestine. However, studying patients with hereditary vitamin D-resistant rickets (HVDRR) provided investigators with a better understanding of VDR's role in calcium homeostasis. HVDRR patients have inactivating mutations in the VDR, and as a consequence they develop hypocalcemia, hyperparathyroidism and severe rickets. However, these phenotypes can be corrected if the patients are given IV infusions of calcium or dietary calcium. This raises the question of what is the physiological significance of VDR-regulated active calcium absorption if calcium homeostasis can be restored independently of the VDR. ^ In order to distinguish the contribution of VDR in the proximal small intestine to overall calcium homeostasis, I generated transgenic mice expressing the human VDR (hVDR) exclusively in the proximal small intestine of mVDR-/- mice by using an hVDR-expressing transgene driven by the duodenal-specific adenosine deaminase enhancer (hVDR+/mVDR-/-). hVDR+/mVDR-/- mice expressed transcriptionally active hVDR only in the proximal small intestine and responded to 1,25(OH)2D3 by up-regulating expression of TRPV6 and calbindin D9K, genes involved in calcium absorption. Furthermore, ligated duodenal loop assays determined that calcium absorption in hVDR+/mVDR-/- mice was as responsive to 1,25(OH)2D3 as in WT mice. Despite having a functional hVDR in the proximal small intestine, hVDR+/mVDR-/- mice were hypocalcemic, had hyperparathyroidism, and were rachitic when fed a normal rodent diet at weaning, as were the mVDR-/- mice. However, when fed a high calcium, phosphorus, and lactose diet (rescue diet), the hVDR+/mVDR-/- mice responded more effectively than the mVDR-/- mice by down-regulation of parathyroid hormone production and by a greater increase in bone mineralization. Furthermore, when three-month-old rachitic mice were fed a rescue diet for 3 weeks, serum calcium and bone mineral content were normalized in hVDR+/mVDR-/- mice, but not in mVDR-/- mice. ^ In conclusion, hVDR expression enabled young mice to better use the rescue diet than mVDR-/- mice. Expression of transgenic hVDR also protected the ability of older mice to respond to the rescue diet despite the absence of the VDR elsewhere in the intestinal tract. I propose that because hVDR+/mVDR-/- mice responded better than mVDR-/- mice to the rescue diet, it is likely that VDR expression in the proximal small intestine is necessary in nutritional (insufficient dietary calcium) and physiological (age) conditions when passive calcium absorption is inadequate. ^
Resumo:
Basalts recovered along the Reunion hotspot track on Ocean Drilling Program (ODP) Leg 115 range in age from 34 Ma at Site 706 to 64 Ma at Site 707. They have undergone various degrees of secondary alteration. Within single holes the amount of alteration can vary from a few percent to near complete replacement of phenocrysts and groundmass by secondary minerals. Olivine appears to be the most susceptible to alteration and in some sections it is the only mineral altered. In other sections, olivine, pyroxene and plagioclase phenocrysts, and groundmass have been completely replaced by secondary minerals. Clays are the predominant form of secondary mineralization. In addition to replacing olivine, pyroxene, glass, and groundmass, clays have filled veins, vesicles, and voids. Minor amounts of calcite, zeolites, and K-feldspar were also detected. The clays that filled vesicles and veins often show color zonations of dark, opaque bands near the edges that grade into tan or green transparent regions in the centers of the veins. The electron microprobe was used to obtain chemical analyses of these veins as well as to characterize isolated clays that replaced specific minerals and filled voids and vesicles.
Resumo:
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3-, NH4+, Fe2+, and Mn2+ and SO42- (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, [NO3]-, Fe(OH)3 and [SO4]2-, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 µmol C cm**-2 yr**-1, of which 77% were due to O2, 17% to [NO3]- and 3% to Fe(OH)3 and 3% to [SO4]2-. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d-1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m**-2 yr**-1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m**-2 yr**-1, thus indicating that ~90% of the calcite flux to the sediment is redissolved.
Resumo:
A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circum Pacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200 °C, the ore is dominantly cinnabar with Hg-Sb-As±Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70 ±3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological ancl geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.
Resumo:
The D/H, 18O/16O and 87Sr/86Sr ratios of the basaltic basement from the Leg 83 section of DSDP Hole 504B show that in that area the oceanic crust has experienced intensive but not pervasive alteration. Isotope ratios of the basalts are very heterogeneous because of an input of oxygen, hydrogen, and strontium from seawater. The hydrogen isotopic composition of many samples displays the complete thermal history of the water-rock interactions. High-temperature mineral formations (actinolites, epidotes, and chlorites) were overgrown by a mineralization at lower temperatures (mixedlayer smectites, iddingsites, and smectites) during successive stages of cooling of the oceanic crust by cold seawater. From 87Sr/86Sr data bulk water/rock ratios up to 5:1 have been calculated. There is evidence that some primary minerals like high-An plagioclases contain oxygen from altered basalts. We have discussed the probability that there existed a seawater/crust interface, now at a depth of 620 m sub-basement, during the high-temperature water/rock interactions. This interface was covered during later magmatism by thick flows, pillow lavas, and intrusives.
Resumo:
Vertical distribution of organic phosphorus and phosphatase activity was studied in the Southeast Pacific Ocean. The average rate of mineralization of organic phosphorus in the 0-200 m layer was shown to differ by a factor of 5-10 in oligotrophic and eutrophic areas, while residence time of phosphorus in production-destruction cycles differed by a factor of only 2-5, apparently because of both concentration of organic phosphorus and phosphorolysis rate increased simultaneously in the areas.
Resumo:
Phosphatized biogenic limestones and phosphorites with initial Fe-Mn mineralization dredged from the summit surface of the Kammu Seamount (Milwaukee Seamounts, northwestern Pacific) are studied. The rocks are largely composed of nannofossils and planktonic foraminifers with an admixture of benthic foraminifers, bryozoans, and other organic remains, presumably including bacterial ones. The nannofosssil and foraminiferal assemblages indicate Quaternary age of sediments, and their phosphatization is consistent with the phosphatization age determined previously based on nonequilibrium uranium (within the limits of 1 My). The age of phosphatization and the Fe-Mn mineralization in the sediments from Pacific seamounts that young implies dependence of these ore-forming processes on oceanic environments favorable for ore accumulation rather than on their age.
Resumo:
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.