905 resultados para Aroma preference
Resumo:
Native species' response to the presence of invasive species is context specific. This response cannot be studied in isolation from the prevailing environmental stresses in invaded habitats such as seasonal drought. We investigated the combined effects of an invasive shrub Lantana camara L. (lantana), seasonal rainfall and species' microsite preferences on the growth and survival of 1,105 naturally established seedlings of native trees and shrubs in a seasonally dry tropical forest. Individuals were followed from April 2008 to February 2010, and growth and survival measured in relation to lantana density, seasonality of rainfall and species characteristics in a 50-ha permanent forest plot located in Mudumalai, southern India. We used a mixed effects modelling approach to examine seedling growth and generalized linear models to examine seedling survival. The overall relative height growth rate of established seedlings was found to be very low irrespective of the presence or absence of dense lantana. 22-month growth rate of dry forest species was lower under dense lantana while moist forest species were not affected by the presence of lantana thickets. 4-month growth rates of all species increased with increasing inter-census rainfall. Community results may be influenced by responses of the most abundant species, Catunaregam spinosa, whose growth rates were always lower under dense lantana. Overall seedling survival was high, increased with increasing rainfall and was higher for species with dry forest preference than for species with moist forest preference. The high survival rates of naturally established seedlings combined with their basal sprouting ability in this forest could enable the persistence of woody species in the face of invasive species.
Resumo:
In the recent past conventional Spin Valve (SV) structures are gaining growing interest over Tunneling Magneto-resistance (TMR) because of its preference due to low RA product in hard disc read head sensor applications. Pulsed Laser Deposited (PLD) SV and Pseudo Spin Valve (PSV) samples are grown at room temperature with moderately high MR values using simple FM/NM/FM/AFM structure. Although PLD is not a popular technique to grow metallic SVs because of expected large intermixing of the interfaces, particulate formation, still by suitably adjusting the deposition parameters we could get exchange bias (EB) as well as 2-3% MR of these SVs in the Current In Plane (CIP) geometry. Exchange Bias, which sets in even without applying magnetic field during deposition observed by using SQUID magnetometry as well as by MR measurements. Angular variation of the MR reveals four-fold anisotropy of the hard layer (Co) which becomes two-fold in presence of an adjacent AFM layer.
Resumo:
The timer-based selection scheme is a popular, simple, and distributed scheme that is used to select the best node from a set of available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal timer mapping that maximizes the average success probability for the practical scenario in which the number of nodes in the system is unknown but only its probability distribution is known. We show that it has a special discrete structure, and present a recursive characterization to determine it. We benchmark its performance with ad hoc approaches proposed in the literature, and show that it delivers significant gains. New insights about the optimality of some ad hoc approaches are also developed.
Resumo:
Two multicriterion decision-making methods, namely `compromise programming' and the `technique for order preference by similarity to an ideal solution' are employed to prioritise 22 micro-catchments (A1 to A22) of Kherthal catchment, Rajasthan, India and comparative analysis is performed using the compound parameter approach. Seven criteria - drainage density, bifurcation ratio, stream frequency, form factor, elongation ratio, circulatory ratio and texture ratio - are chosen for the evaluation. The entropy method is employed to estimate weights or relative importance of the criterion which ultimately affects the ranking pattern or prioritisation of micro-catchments. Spearman rank correlation coefficients are estimated to measure the extent to which the ranks obtained are correlated. Based on the average ranking approach supported by sensitivity analysis, micro-catchments A6, A10, A3 are preferred (owing to their low ranking) for further improvements with suitable conservation and management practices, and other micro-catchments can be processed accordingly at a later phase on a priority basis. It is concluded that the present approach can be explored for other similar situations with appropriate modifications.
Resumo:
A supply chain ecosystem consists of the elements of the supply chain and the entities that influence the goods, information and financial flows through the supply chain. These influences come through government regulations, human, financial and natural resources, logistics infrastructure and management, etc., and thus affect the supply chain performance. Similarly, all the ecosystem elements also contribute to the risk. The aim of this paper is to identify both performances-based and risk-based decision criteria, which are important and critical to the supply chain. A two step approach using fuzzy AHP and fuzzy technique for order of preference by similarity to ideal solution has been proposed for multi-criteria decision-making and illustrated using a numerical example. The first step does the selection without considering risks and then in the next step suppliers are ranked according to their risk profiles. Later, the two ranks are consolidated into one. In subsequent section, the method is also extended for multi-tier supplier selection. In short, we are presenting a method for the design of a resilient supply chain, in this paper.
Resumo:
Acoustic signal variation and female preference for different signal components constitute the prerequisite framework to study the mechanisms of sexual selection that shape acoustic communication. Despite several studies of acoustic communication in crickets, information on both male calling song variation in the field and female preference in the same system is lacking for most species. Previous studies on acoustic signal variation either were carried out on populations maintained in the laboratory or did not investigate signal repeatability. We therefore used repeatability analysis to quantify variation in the spectral, temporal and amplitudinal characteristics of the male calling song of the field cricket Plebeiogryllus guttiventris in a wild population, at two temporal scales, within and across nights. Carrier frequency (CF) was the most repeatable character across nights, whereas chirp period (CP) had low repeatability across nights. We investigated whether female preferences were more likely to be based on features with high (CF) or low (CP) repeatability. Females showed no consistent preferences for CF but were significantly more attracted towards signals with short CPs. The attractiveness of lower CP calls disappeared, however, when traded off with sound pressure level (SPL). SPL was the only acoustic feature that was significantly positively correlated with male body size. Since relative SPL affects female phonotaxis strongly and can vary unpredictably based on male spacing, our results suggest that even strong female preferences for acoustic features may not necessarily translate into greater advantage for males possessing these features in the field. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.
Resumo:
Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of ``how much'' information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on ``what'' is coded by primary afferents. Amongst the kinematic variables tested-position, velocity, and acceleration-primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80-90%. The final 10-20% were found to be due to non-linear coding by spike bursts.
Resumo:
Oxovanadium(IV) complexes VO(aip)(L)](ClO4)(2) (L = phtpy, 1; stpy, 2) and VO(pyip)(L)](ClO4)(2) (L = phtpy, 3; stpy, 4), where aip is 2-(9-anthryl)-1H-imidazo4,5-f]1,10] phenanthroline, pyip is 2-(1-pyrenyl)-1Himidazo4,5-f]1,10] phenanthroline, phtpy is (4'-phenyl)-2,2': 6',2 `'-terpyridine and stpy is (2,2': 6', 2 `'-terpyridin-4'-oxy) ethyl-beta-D-glucopyranoside, were prepared, characterized and their DNA binding and photocleavage activity, cellular uptake and photocytotoxicity in visible light were studied. The complexes are avid binders to calf thymus DNA (K-b similar to 10(5) mol(-1)). They efficiently cleave pUC19 DNA in red light of 705 nm via the formation of HO center dot species. The glucose appended complexes 2 and 4 showed higher photocytotoxicity in HeLa and Hep G2 cells over the normal HEK 293T cells. No such preference was observed for the phtpy complexes 1 and 3. No significant difference in IC50 values was observed for the HEK 293T cells. Cell cycle analysis showed that the glucose appended complexes 2 and 4 are more photocytotoxic in cancer cells than in normal cells. Fluorescence microscopy was done to study the cellular localization of complex 4 having a pendant pyrenyl group.
Resumo:
The distributed, low-feedback, timer scheme is used in several wireless systems to select the best node from the available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal metric-to-timer mappings for the practical scenario where the number of nodes is unknown. We consider two cases in which the probability distribution of the number of nodes is either known a priori or is unknown. In the first case, the optimal mapping maximizes the success probability averaged over the probability distribution. In the second case, a robust mapping maximizes the worst case average success probability over all possible probability distributions on the number of nodes. Results reveal that the proposed mappings deliver significant gains compared to the mappings considered in the literature.
Resumo:
In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (approximate to 20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (R-g) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the R-g of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (R-g of native Hb=23.8 angstrom). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.
Resumo:
Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.
Resumo:
Primates exhibit laterality in hand usage either in terms of (a) hand with which an individual solves a task or while solving a task that requires both hands, executes the most complex action, that is, hand preference, or (b) hand with which an individual executes actions most efficiently, that is, hand performance. Observations from previous studies indicate that laterality in hand usage might reflect specialization of the two hands for accomplishing tasks that require maneuvering dexterity or physical strength. However, no existing study has investigated handedness with regard to this possibility. In this study, we examined laterality in hand usage in urban free-ranging bonnet macaques, Macaca radiata with regard to the above possibility. While solving four distinct food extraction tasks which varied in the number of steps involved in the food extraction process and the dexterity required in executing the individual steps, the macaques consistently used one hand for extracting food (i.e., task requiring maneuvering dexterity)the maneuvering hand, and the other hand for supporting the body (i.e., task requiring physical strength)the supporting hand. Analogously, the macaques used the maneuvering hand for the spontaneous routine activities that involved maneuvering in three-dimensional space, such as grooming, and hitting an opponent during an agonistic interaction, and the supporting hand for those that required physical strength, such as pulling the body up while climbing. Moreover, while solving a task that ergonomically forced the usage of a particular hand, the macaques extracted food faster with the maneuvering hand as compared to the supporting hand, demonstrating the higher maneuvering dexterity of the maneuvering hand. As opposed to the conventional ideas of handedness in non-human primates, these observations demonstrate division of labor between the two hands marked by their consistent usage across spontaneous and experimental tasks requiring maneuvering in three-dimensional space or those requiring physical strength. Am. J. Primatol. 76:576-585, 2014. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Using a dataset of 1164 crystal structures of largely non-homologous proteins defined at a resolution of 1.5 angstrom or better, we have investigated the (phi,psi) preferences of 20 residue types by considering the residues which occur in loops. Propensities of residue types to occur in the loops with (phi,psi) values in the aa region of the Ramachandran map has a poor correlation coefficient of 0.48 to the Chou-Fasman propensities of the residue types to occur in the a-helical segments. However the correlation coefficient between propensities of residues in loops to adopt beta conformations and those in beta-sheet is much higher (0.95). These observations suggest that a-helix formation is well influenced by the local amino acid sequence while intrinsic preference of residue types for beta-sheet plays a major role in the formation of beta-sheet. The main chain polar groups of residues in loops, that can affect the (phi,psi) values, can be involved in intra-molecular hydrogen bonding. Therefore we investigated further by considering subset of residues in loops with low (0 to 2) number of intra-molecular hydrogen bonds per residue involving main chain polar atoms. For this subset, the correlation coefficients between propensities for alpha-helix and alpha(R) region and between beta-sheet and beta-region are 0.26 and 0.64 respectively. This reiterates higher intrinsic tendency of beta-region favouring residues to adopt beta-sheet than alpha(R) region favouring residues to adopt alpha-helical structure.
Resumo:
D Regulatory information for transcription initiation is present in a stretch of genomic DNA, called the promoter region that is located upstream of the transcription start site (TSS) of the gene. The promoter region interacts with different transcription factors and RNA polymerase to initiate transcription and contains short stretches of transcription factor binding sites (TFBSs), as well as structurally unique elements. Recent experimental and computational analyses of promoter sequences show that they often have non-B-DNA structural motifs, as well as some conserved structural properties, such as stability, bendability, nucleosome positioning preference and curvature, across a class of organisms. Here, we briefly describe these structural features, the differences observed in various organisms and their possible role in regulation of gene expression.